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Abstract: One very simple interpretation of calibration is to adjust a set of parameters 

associated with a computational science and engineering code so that the model agreement is 

maximized with respect to a set of experimental data. One very simple interpretation of 

validation is to quantify our belief in the predictive capability of a computational code 

through comparison with a set of experimental data. Uncertainty in both the data and the code 

are important and must be mathematically understood to correctly perform both calibration 

and validation. Sensitivity analysis, being an important methodology in uncertainty analysis, 

is thus important to both calibration and validation. In this paper, we intend to clarify the 

language just used and express some opinions on the associated issues. We will endeavor to 

identify some technical challenges that must be resolved for successful validation of a 
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predictive modeling capability.  One of these challenges is a formal description of a “model 

discrepancy” term.  Another challenge revolves around the general adaptation of abstract 

learning theory as a formalism that potentially encompasses both calibration and validation in 

the face of model uncertainty. 
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1. INTRODUCTION 

 

Our primary goal for this paper is to explore and differentiate the principles of calibration 

and validation for computational science and engineering (CS&E), as well as to present some 

related technical issues that are important and of current interest to us. Our conclusion is that 

calibration and validation are essentially different. To explain what we mean by calibration 

and validation, we restrict our attention to CS&E software systems, called codes here. We 

then define the product (output) of the execution of a code for a given choice of input to be 

the resulting calculation. Now, one definition of calibration is to adjust a set of code input 

parameters associated with one or more calculations so that the resulting agreement of the 

code calculations with a chosen and fixed set of experimental data is maximized (this requires 

a quantitative specification of the agreement). Compare this with the following simple 

definition of validation: that is, to quantify our confidence in the predictive capability of a 

code for a given application through comparison of calculations with a set of experimental 

data.  

The foundation of our discussion below elaborates the meaning of these definitions of 

validation and calibration, primarily through the introduction of some mathematical 

formalism. Our formalism allows us to reasonably precisely argue that CS&E validation and 

calibration require rigorous comparison with benchmarks, which we precisely define in 

Section 2. Our discussion leads us to consider other concepts as well, including uncertainty, 

prediction, and verification, and their relationship to validation and calibration. Verification 
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is a particularly important concept in CS&E and inevitably influences calibration and 

validation. We will explain why this is the case, and claim as well that validation and 

calibration in CS&E both depend on results of verification. We also claim that calibration is 

logically dependent on the results of validation, which is one way of emphasizing that 

calibration cannot be viewed as an adequate substitute for validation in many CS&E 

applications.  

Uncertainty quantification, and therefore sensitivity analysis, is a critical challenge in both 

validation and calibration. A lot has already been written on this topic in the computational 

literature and so we mainly discuss three highly speculative issues that are atypical of 

previously published themes. First, we discuss a formalization of the concept of code 

credibility that results from the use of benchmarks in verification and validation. Credibility is 

intended to be an important consequence of verification and validation; and calibration for 

that matter. We raise, but do not answer, the question of how credibility might be quantified. 

However such quantification may be achieved, it will have uncertainty associated with it. 

Second, we discuss a specific area of overlap between validation and calibration that is 

centered on how to deal with uncertainty in the physical models implemented in a CS&E 

code. This is the topic of calibration under uncertainty. Our primary conclusion is that recent 

calibration research that mathematically confronts the presence of this model-form 

uncertainty in statistical calibration procedures is important and coupled to validation issues. 

We speculate on the nature of this coupling, in particular that validation provides important 

information to calibration accounting for model-form uncertainty. We further argue that a full 

exploration of this issue might lead to the investigation of abstract learning theory as a 

quantitative tool in validation and calibration research. Finally, we speculate that uncertainty 
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quantification has a role in verification. The use of uncertainty quantification in verification is 

probably not controversial, for example in statistical testing procedures, but our belief that the 

results of verification studies have uncertainty that requires quantification is. We explain this 

issue, but do not attempt to resolve it in this paper. 

It is perhaps unclear why we are presenting an entire paper that mainly speaks to the issue 

of separation of calibration and validation. After all, isn’t the overarching goal of 

computational science to improve the associated calculations for given applications? 

Therefore, isn’t it natural to perform calibration to achieve this purpose? We believe that it is 

dangerous to replace validation with calibration, and that validation provides information that 

is necessary to understand the ultimate limitations of calibration. This is especially true in 

certain cases for which high-consequence CS&E prediction is required. These cases represent 

significant challenges for the use of CS&E codes and inevitably increase the importance of 

precisely distinguishing between validation and calibration in support of these uses. Our 

approach in this paper to calibration and validation emphasizes a kind of logical ideal. We do 

not emphasize practical issues, but the interested reader can find practicalities discussed in 

many of our references. We do emphasize that “real validation” and “real calibration” can be 

argued to be somewhat removed from the formalism and logical separation we stress in this 

paper. Murky separation of validation and calibration in real CSE problems highlights the 

need to have some kind of logical foundation for clearly understanding the interplay of these 

concepts, especially for high-consequence applications of CSE.  

Section 2 presents a discussion of definitions of the various concepts mentioned above. 

Section 2.2 provides an illustration of the key ideas of verification, validation, and calibration 

using a computational fluid dynamics example (virtually the only CSE example in the paper). 
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Formalism of the concepts is introduced in Section 2.3, including of the concept of a 

benchmark and its comparison with calculations through comparison functions, and a notional 

formalism for credibility. In Section 3, we review common ideas of calibration (Sections 3.1 

and 3.2), introduce some current research themes that generalize these ideas when considering 

uncertainty in the models that must be calibrated (Section 3.3), and introduce the possibility 

that computational learning theory might have some interest to our problems (Section 3.4). 

Section 4 briefly touches upon the role of sensitivity analysis in our discussion. We primarily 

provide some references, discuss the early appearance of sensitivity analysis in validation, and 

briefly comment on the presence of sensitivity analysis in credibility measures. Section 5 

concludes the paper. We have tried to provide a useful set of references. 

 We emphasize that this paper presents some research ideas that are in early stages and 

somewhat speculative, but that we feel offer promising potential paths forward in calibration 

and validation. We introduce enough formalism to add some precision to our presentation, but 

this formalism does not reduce the amount of speculation in our discussion. Nor is the 

formalism enlisted to, in some sense, solve a particular problem in this paper.  We hope that 

future papers will perform this role. 
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2. CALIBRATION AND VALIDATION 

2.1. Guiding Definitions 

In this paper our underlying emphasis is on computational science and engineering (CSE) 

supported by the U. S. Department of Energy’s Advanced Simulation and Computing 

program (ASC, formerly called ASCI). A description of this program is given in [1]. The CSE 

software developed under the ASC program is centered on the large-scale parallel numerical 

solution of systems of nonlinear partial differential equations of great complexity. The 

software implementations that accomplish this are called computer codes, or simply codes 

(see below). 

Within this context, the current formal definitions of verification and validation (V&V) 

used by the ASC program are as follows:  

Verification (ASC) is the process of confirming that a computer code correctly 

implements the algorithms that were intended.  

Validation (ASC) is the process of confirming that the predictions of a code 

adequately represent measured physical phenomena.  

These definitions have a heritage that reaches back to definitions of V&V originally 

formalized by the Defense Modeling and Simulation Office (DMSO) of the United States 

Department of Defense (DoD) [2-3]. From the perspective of the computational engineering 

and physics communities, the definition of verification by the DoD does not make it clear that 

the accuracy of the numerical solution to partial differential equations (PDEs) should be 

included in the definition. To clarify this issue, the Computational Fluid Dynamics Committee 



 
 
April 26, 2005  SAND2004-6083J 

REVISED MANUSCRIPT 
 

 
8

on Standards of the American Institute of Aeronautics and Astronautics (AIAA) proposed a 

slight modification to the DoD definition [4]:  

Verification (AIAA) is the process of determining that a model implementation 

accurately represents the developer's conceptual description of the model and the 

solution to the model. 

Validation (AIAA) is the process of determining the degree to which a model is an 

accurate representation of the real world from the perspective of the intended uses of 

the model. 

While the AIAA definitions of V&V are more general than the current ASC definitions, 

we believe the ASC definitions to be compatible with the AIAA definitions. Calibration is not 

defined by ASC in [1]. We will give a definition of this term below, but we find it convenient 

to present this definition after we have defined the term benchmark. 

We are only concerned with computational solutions of systems of partial differential 

equations, but of course V&V is of interest for a much broader class of simulation 

applications, such as discrete-event simulations and agent-based simulations. Partial 

differential equation solutions, generated by finite difference, finite element, spectral, or other 

numerical methods, follow the process of (1) writing down partial differential equations and 

required initial and boundary conditions; (2) developing mathematical algorithms for the 

numerical solution of these partial differential equations; (3) implementing these algorithms in 

a body of software; (4) execution of the code on computers and (5) analysis of the results.  

A code is the body of software that implements the solution algorithms in step (3) above. 

This is the meaning of the word “code” in the ASC definitions of V&V above. Such codes are 
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typically designed to be general purpose, for example computational fluid dynamics codes.  

This means that there is great flexibility in the specification of initial and boundary 

conditions, and in the numerical solution details (in particular discretization) of the numerical 

solution.  

A calculation is a fixed choice of the input of a code, that is of the initial and boundary 

conditions, all physics modeling specification parameters, and all numerical parameters for a 

particular code that produce computational results, and the resulting output of the execution of 

the code with this choice of input. One could include within the components of a calculation 

other factors that influence the execution of the code as well, such as the computing hardware 

the calculation was performed on and the choice of post-processing software used to analyze 

the results of the calculation. We will not concern ourselves with these additional factors.  

A computational science and engineering prediction is simply a calculation that predicts a 

number or quantity or a collection of these quantities prior to or in lieu of their physical 

measurement. We have chosen the definition of prediction to be anticipation of measurements 

because that is the main emphasis for prediction in CS&E. With a computational prediction 

we are making a statement about physical phenomena without recourse to experimental 

observation of the specific phenomena first. Examples of such predictions include: 

- Simulate an experiment without knowledge of its results or prior to its execution. 

- Make scientific pronouncements about phenomena that cannot currently be studied 

experimentally. 

- Use computation to extrapolate existing understanding into experimentally unexplored 

regimes. 
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We wish to distinguish our particular concerns here from the conventional notion of 

scientific exploration (where prediction may be wrong but still useful). We are interested in 

confident prediction using computation. In computational science, of course, to some degree 

confidence is correlated with belief in the quantitative numerical, mathematical and physical 

accuracy of a calculated prediction. Intuitively, confident prediction then implies having some 

level of confidence or belief in the quantitative accuracy of the prediction. This further 

implies a willingness to use the prediction in some meaningful way, for example in a decision 

process.  

By introducing the expectation of accuracy in prediction as a foundation for confidence 

into this discussion we have therefore introduced the requirement for one or more 

measurement principles that we can use to quantify this accuracy. A benchmark is a choice of 

information that is believed to be accurate or true for use in verification, validation or 

calibration (defined below), one or more methods of comparing this information with 

computational results, and logical procedures for drawing conclusions from these 

comparisons. The analytic mathematical solution of a test problem would be true for use as a 

verification benchmark. In validation, accuracy of an experimental benchmark could be 

interpreted as small (enough) experimental error bars. Here we emphasize that the application 

of benchmarks performed in verification and validation is the primary basis for establishing 

our confidence that a prediction is accurate and useful. Clearly the choice of benchmark 

cannot be decoupled from the intended purpose of the benchmark. In the remainder of the 

paper we will sometimes use the word benchmark primarily in reference to the information 

defined by the benchmark, with the method(s) of comparison with calculations and drawing 

conclusions only implicit. 
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In principle, the accuracy assessment underlying confidence in a computational prediction can 

be performed through verification and validation either before or after the creation of the 

prediction. As we will argue in greater detail in Section 2, we believe that verification and 

validation should logically occur prior to the creation of a prediction. Computational 

prediction defined as performing calculations and reporting results does not require prior 

benchmarking, there is little or no confidence in the resulting prediction and this is not good 

practice. For example, a computational prediction regarding an upcoming experiment can be 

made with no attention to the problem of computational accuracy at all. Once the experiment 

is performed, merely comparing the experiment with the calculation does not create a 

benchmark. It is an independent thought process to decide what role the now-performed 

experiment might have as a benchmark, and revolves around questions about the relevancy 

and accuracy of the experiment. 

Our confidence in the process of accurate prediction does require benchmarks. In 

particular, our judgment of the accuracy of a given prediction depends on our quantitative 

understanding of past computational performance of the code for other problems. Our concept 

of benchmark here is designed to capture the core of this past experience. In essentially all 

circumstances of practice in CS&E with complex codes, our current belief in the accuracy of 

a real prediction rests on a complex set of existing knowledge. Our concept of benchmark can 

be viewed as a concentration point of this knowledge. Examples of benchmarks include 

analytic test problems or the experimental information used in previous experimental-

computational comparisons with the same code. Subjective expert opinion may also be 

deemed to be a benchmark. For example, this is often the basis for declaring one code to be a 

benchmark in a code-comparison activity [5].  
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Benchmarks are especially helpful for us in more completely quantifying our 

understanding of verification, validation and calibration. We quoted the ASC definitions of 

V&V above. A more technical discussion of the definitions of V&V is given by Oberkampf 

and Trucano [6]; see also Roache [7] for an alternative discussion. These references imply 

that there are myriad technical meanings associated with these terms, especially depending on 

the technical community that is engaged in the discussion. From a broader perspective, there 

is even debate as to whether a term like validation can be sensible when applied to 

computational models [8]. This debate tends to center on definitions of validation that imply 

some philosophical absolutes such as “correctness of physics.” At its core in such a 

discussion, model validation means establishing that a model (or code) is true. When stated in 

this way, it is easy to dispute whether this is possible or not [9] although some [7] view this 

line of argument as outrageously irrelevant. 

The concept of benchmarks helps us clarify the content of V&V and formalize the essence 

of the tasks that are performed in pragmatic circumstances. Let us first consider verification. 

From the software engineering perspective, the ASC definition of verification is compatible 

with the process of determining that requirements are correctly implemented in a code.  For 

CS&E, Roache has stated that this effectively means that the equations implemented in the 

code are correctly numerically solved for the intended application. This is an important way 

of viewing the problem of verification because it emphasizes that verification is primarily a 

mathematical problem, as long as the issues specific to software implementation are 

acknowledged. We also have some expectation of generalization of the findings of 

verification tasks. If the equations are accurately numerically solved in one case, this is likely 
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true for a broader set of cases given the mathematical nature of this problem. How broad this 

larger set of cases can be is an important question in particular subject matter applications. 

The problem of verification in CS&E codes boils down to the following actions. Given a 

set of equations, (1) are the chosen solution algorithms mathematically correct?; (2) is the 

software implementing these algorithms correct?; (3) do particular choices of code input 

parameters yield accurate calculations when executed? This latter question emphasizes that a 

perfect code implementation of a perfect solution algorithm can yield an inaccurate 

calculation because of poor code input specifications, including an inadequately (for needed 

accuracy) defined computational mesh. This is not a trivial objection. For years, many 

important computational predictions have not been performed as accurately as needed because 

of restrictions on the characteristics of the computational mesh due to computing hardware 

limitations. There is no end in sight to this particular problem. 

Benchmarks play an important role in performing verification, especially in assessing the 

answers to questions (1) and (2) above, because these questions cannot be completely 

answered by rigorous mathematical theorems in complex calculations. Oberkampf, Trucano, 

and Hirsch [6,10] discuss this issue in detail. The use of benchmarks in verification is called 

testing and has a major software engineering literature associated with it [11,12]. From our 

point of view, benchmarks also provide major input into the assessment of question (3), in the 

sense of aggregating and systematically integrating past accuracy experience to judge the 

computational accuracy of a current prediction. As noted by Oberkampf and Trucano [6], 

question (3) in principle can be answered well enough through a posteriori error estimation, 

when and if that technology achieves a sufficient level of rigor and generality to apply to the 

predictions CS&E must make in the future. While some believe that a posteriori error 
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estimation already is sufficiently capable of addressing (3) for complex problems, we 

disagree. The other mathematical alternative of empirical convergence studies, even if it can 

be performed, ultimately has limited mathematical rigor associated with it. The use of 

benchmarks therefore remains a critical contributor to the resolution of question (3) in 

complex calculations. More generally, while we can honestly characterize verification as a 

mathematical problem, it is highly unlikely that it will be fully addressed for realistic CS&E 

codes by convincing mathematical demonstrations. Instead, the variety of information 

available at any given time for attacking verification must include benchmarks and an 

understanding of their impact. 

Validation deals with the question of whether the implemented equations in a code are 

correct for an intended application of the code. Again, from the software engineering 

perspective, the ASC definition of validation is the process of determining whether the 

requirements implemented in the code are correct for intended applications. For CS&E 

“correct requirements” means correct science and engineering. Thus, as Roache has 

emphasized, validation is a problem of physics, engineering, chemistry, and so on, not of 

mathematics. To avoid the philosophical debate hinted at above for validation, it is convenient 

for us to emphasize that in CS&E, validation is the process of quantifying the physical fidelity 

and credibility of a code for particular predictive applications through the comparison with 

defined sets of physical benchmarks. These benchmarks define what we will call the 

validation domain [13]. We assume in this paper that validation benchmarks are always 

experimental, for example as defined through dedicated experimental validation experiments. 

Predictive application of the code must therefore be interpreted as an interpolation or 

extrapolation beyond the validation domain. 
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Calibration is the process of improving the agreement of a code calculation or set of code 

calculations with respect to a chosen set of benchmarks through the adjustment of parameters 

implemented in the code. We emphasize that calibration and validation can differ simply 

through the choice of benchmarks. A benchmark set can be chosen specifically to facilitate 

the act of calibration and need not be relevant to validation, or verification for that matter. 

Clearly, the specific way benchmarks are selected and used to perform calibration is a 

technical and methodological issue, of which we will have more to say below. We expect this 

process to be highly subject matter dependent. In Section 2.3 we introduce formalism that 

allows us to explain more precisely the role of code input parameters in this discussion. 

 

2.2. An Illustration 

Chen and Trucano [14] document a planar, inviscid two-dimensional validation study of 

strong shock reflection, where simulation was performed by the ALEGRA code solving the 

compressible Euler equations. The problem of interest is illustrated in Figure 1, where the 

geometry of a typical calculation and a color representation of the computed two-dimensional 

density field at a given time are shown. The physical problem is that of an incident shock 

wave of given Mach number obliquely reflecting from a metallic wedge. In Figure 1, the 

direction of the incident shock wave is given by the block arrow; the direction of the reflected 

shock wave is parallel to the wedge boundary, depicted by the second arrow. A double Mach 

reflection simulation is shown in this figure. The shock reflection process transforms from 

regular reflection to single Mach or double Mach reflection dependent upon wedge angle θ 

and the incident shock Mach number. The details are unimportant for our discussion and can 
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be found in Chen and Trucano. Information about the ALEGRA shock wave physics code can 

also be found in that reference. 

Verification and validation can be illustrated in terms of these kinds of calculations. 

Figure 2 demonstrates numerical accuracy concerns associated with verification by overlaying 

three separate resolution calculations reported in Chen and Trucano of the computed pressure 

as a function of distance parallel to the boundary of the wedge for conditions where double 

Mach reflection was observed experimentally. Clear differences are seen in these three 

calculations, most notably that a structure identifiable with double Mach reflection (two 

distinct shock waves) only begins to appear at the finest reported resolution. A posteriori error 

estimation techniques are not available in this study. 

Our ability to draw conclusions from experimental data that may be compared with 

calculations like that in Figure 1 is dependent upon the numerical quality of the calculations 

and the resolution at which experimental results are recorded. Verification assesses the 

numerical quality of the calculations, and has two components – calculation verification and 

code verification [7]. Figure 2 is one means of studying numerical quality. The questions that 

should be asked, and that are simply implicit in Figure 2, are many. Under calculation 

verification we may ask: What is the numerical error of a given calculation for a specified 

mesh and choice of input? How does this error depend on the mesh and computational 

parameters, such as numerical viscosities required for shock fitting in this case? More 

specifically, are calculations converged? That is, is the computed error below a specified 

tolerance? Under code verification, we might ask whether calculations that are believed to be 

converged, as confirmed perhaps through a careful grid convergence study, are in fact 

converged to the mathematically correct solution. This latter point is a question about the 
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correctness of the solution algorithms and their software implementation. Therefore, its 

answer also requires rigorous appraisal of the absence of software bugs. This problem is made 

difficult and important by the fact that CS&E codes that compile and run and even produce 

results similar qualitatively to those in Figures 1 and 2 may still have software bugs that 

destroy the credibility of the results. 

The concept of validation is illustrated in Figure 3, where experimental pressure data are 

compared with ALEGRA simulations. This figure is a variation of a figure first published by 

Sandoval [15], and overlays experimental normalized pressure data and specific ALEGRA 

calculations described by Chen and Trucano as a function of wedge shock angle. The vertical 

axis in this figure is defined by the normalized pressure ratio: 

 

 r

inc

p
p
∆

≡
∆

Reflected Pressure - Ambient Pressure
Incident Pressure - Ambient Pressure

 

 

Experimental data in the figure show the transition from regular reflection (RR) to double 

Mach reflection (DMR) near a wedge angle of 50 degrees. The experimental data have error 

bars but, as explained in Chen and Trucano, there is insufficient information available to 

sharply characterize the statistical meaning of them. The experimental data in Figure 3 define 

a validation benchmark, or several such benchmarks if one wishes to look at each 

experimental data point individually. One of the main purposes of the published Chen and 

Trucano study was to assess the qualitative ability of ALEGRA to approximate the transition 

from regular to double Mach reflection via comparisons with this benchmark. In principle 

validation should not even be attempted until the verification questions we stated above can 
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be satisfactorily answered. In practice, unfortunately, for complex computational codes and 

models full resolution of these questions is virtually impossible. The conclusions in Chen and 

Trucano reflect this observation – the state of verification was so unsatisfactory (in particular, 

the lack of evidence of convergence of the calculations) that the authors could only draw 

qualitative conclusions from the comparison with the experimental data. There is clearly 

quantitative disagreement between the reported ALEGRA calculations and the experimental 

data, although the computed transition to double Mach reflection is in qualitative agreement 

with the experimental data. Until better understanding of the numerical error in the 

calculations can be achieved, the meaning of the quantitative disagreement is difficult to 

extract. 

If we assume, nonetheless, that there is an acceptable verification basis for performing 

validation through comparisons with experiment and calculation as in Figure 3 and drawing 

conclusions we are led to a variety of further validation-specific questions. For example, what 

do the experimental error bars in Figure 3 mean? What are equivalent numerical error bars? 

Validation requires both types of error bars; what does it mean if one or both are missing? Are 

the depicted comparisons good, bad, or indifferent? What is the context of this evaluation? 

Why was this means chosen to compare experiment and calculation? Why are these 

experimental data considered to be benchmarks? Is there something better? Is the means of 

comparison itself subject to sensitivities that should be quantified? Why was this particular 

physical problem, Mach reflection, chosen as a validation benchmark to begin with? What 

previous knowledge or context does this choice rest on? Where should we go next? What is 

the next benchmark? Or is this comparison enough? 
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A situation like Figure 3 demonstrates the potential confusion of calibration with 

validation. In other words, a decision might be made to adjust certain parameters in the 

calculations to improve the agreement of ALEGRA (or any code undergoing this kind of 

comparison) with the presented experimental benchmark(s). A common example of this is the 

choice of a mesh when a calculation is otherwise not converged. One might apply mesh 

tuning and expert judgment about local refinement of the computational mesh to achieve 

some kind of better agreement with the presented data. This may then be accompanied by a 

statement of sufficiency of the presented computational accuracy based on this procedure. 

This process is not validation. It does not address any of the questions we posed above 

regarding validation. This is a calibration process and therefore has questionable explanatory 

or predictive content. Such a calibration also rests upon questionable mathematical grounds in 

the present example of calculations with uncertain mathematical accuracy. Neither does such 

a calibration address verification; the question of correctness of solution algorithms, their bug-

free software implementation, and the particular mathematical accuracy of numerical solution 

of equations is not answered by comparison with experimental data, nor by tuning the 

computed agreement with experimental data.  

The computations in Figure 3 were those corresponding to the finest choice of mesh 

suggested in Figure 2. However, this was a passive choice, not a deliberate calibration 

(attempt to better match the experimental benchmark). Chen and Trucano simply used the 

finest resolution calculations they could complete at the time in comparisons with 

experimental data. Figure 2 provided evidence that finest resolution calculations were 

important because the physical structure of greatest interest, double Mach reflection, only 

emerged at the finest resolution. But this choice does not resolve the underlying questions of 
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verification because only incomplete convergence studies are reported and, therefore, the 

mathematical accuracy of these calculations remains an open question. The numerical error 

contribution that the particular meshing may make to the agreement or lack of agreement with 

the data in Figure 3 remains open, and that is why numerical error bars were not reported in 

Chen and Trucano. 

We also comment that a very simple example of another common kind of calibration in a 

compressible flow problem such as that shown in Figure 1 is to adjust the equation of state of 

the gas defined in the numerical calculations in an attempt to better match experimental 

benchmarks as in Figure 3. This may or may not be possible; and it may or may not be useful. 

We emphasize here that this procedure is still logically separate from verification, hence still 

leaves that question open. The value of such a calibration ultimately rests upon sufficient 

verification. If numerical errors are large or if code bugs are present in Figure 3, what is the 

point of adjusting a physical parameter in the calculation to achieve better agreement with the 

benchmark?  

This simple example emphasizes that verification questions must really be answered for 

calibration as well as validation. Our comments above argue that this may be quite difficult. 

But in the absence of adequate verification, the results of neither validation nor calibration can 

really be fully trusted.  If one insists on considering certain kinds of calibration to be 

compensation for inadequate numerical resolution the foundation provided by verification is 

removed in the presented computational results, making consequential validation assessments 

that much harder, if not rendering them useless. We reasonably ask what the rationale is for 

calibrating a code to compensate for perceived numerical discretization inadequacy when the 

root of the problem might be code bugs instead. For instance, when may such a calibration 
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successfully match superficial quantitative features in the chosen benchmark(s) but obscure or 

ignore important qualitative information that has been corrupted because of algorithm or 

implementation errors?  

We insist that calibration and validation are distinct. While validation should provide a 

better foundation for calibration and guide its use, calibration does not replace validation, nor 

does it replace verification. To the extent that the use of calibration confuses or hides the fact 

that verification and validation are poor, confidence in the credibility of the resulting 

calculations is misunderstood. For applications to high-consequence problems, such as 

governmental policy issues, we believe that this is undesirable. In the circumstances of poor 

verification and validation, calibration should be used cautiously and with a certain degree of 

pessimism about its ultimate value.  

 

2.3. Some Formalism 

 

2.3.1. Alignment of calculations and benchmarks 

Whether we are performing verification, validation or calibration, the overarching purpose 

of the task is to perform the right calculations for the task; to compare these calculations with 

the right benchmarks; and to draw the right conclusions. To enhance our discussion of these 

issues we now find it convenient to introduce enough formalism to sharpen the distinctions 

between these tasks. This will further clarify our position on validation versus calibration. The 

reader should view the following presentation as mainly notional. We provide sufficient 
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references to specific instances of these formalisms to aid the reader who is interested in 

greater details.  

We emphasize again that we are focused on computational codes that solve partial 

differential equations. We declared previously that the word calculation would be reserved for 

the execution of a computational code for specific input, producing a given output. Let ( )M ⋅  

denote the code, which is a nonlinear (in general) mapping from the input to the output, 

thus ( ) :M ⋅ →P O . The input is written as parameter vector in the space P ,  p∈P  , where 

P  is a (typically) high-dimensional (for example, P  is usually a subset of m-dimensional 

Euclidean space mR ) that serves to uniquely define the input for a particular calculation. A 

calculation is then a specific choice of input p , and the output of the code applied to this 

input, ( )M p . Different choices of p generate different calculations. The output space O  is, 

in principle, equally complex, reflecting the potential complexity of the output of real CS&E 

codes.  

The input parameter vector p is necessary for specifying a unique input set for the 

underlying code and may have components that are often functions, such as a permeability 

field in porous flow, or probability distributions for stochastic parameters. Furthermore, the 

components of p will possibly be other vectors or matrices, in addition to scalars. The 

complexity of the input is considerable and highly subject-matter dependent. When we state 

that the vector p  is high-dimensional we mean that the number of input parameters may be 

greater than the number of nominal calculations that might be performed during the course of 

a verification, validation, or calibration study in the absence of uncertainty quantification 

procedures. Potentially relevant p ’s form a small subset of the indicated space for most 
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codes. Because of this, we find that a decomposition of this vector is important for our 

purposes. Thus, we introduce the notation 

 ( ),A Np p p= ∈ ×A NP P  (1) 

In equation (1), Ap  is the component of the parameter vector that specifies alignment with 

the intended model application. In other words, a specific calculation for an intended 

application is defined by a choice of Ap . Therefore, we assume that Ap  is sufficient to 

parameterize the application domain for a specified use of the code. The Ap  vector, for 

example, specifies geometry and other initial data, and boundary conditions. Whether the 

entire application domain defined this way is accessible through validation or calibration is 

another matter.  

The vector Np  specifies numerical parameters and other quantities that are necessary to 

execute a calculation and control its numerical accuracy. Np  includes parameters necessary 

for adjusting the numerical influence of discretizations, including both temporal and spatial 

characteristics. Np  can include iterative accuracy controls, computational parameters devoted 

to artificial smoothing and diffusion or other similar regularizations, and parameters that 

control automated algorithm operation, as in automatic mesh refinement control and hybrid 

algorithm operation. The vector Np  may or may not be independent of Ap . For example, a 

change in Ap  might change numerical characteristics controlled by Np . 

For example, suppose that we are performing validation. In this case, the calculation is to 

be compared with experimental data. The model is constrained by the need to calculate in 

alignment with the chosen experimental benchmark to the highest degree. This means ideally 
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that the computational geometries, materials, and other initial data should be the same as the 

experimental benchmark, and the boundary conditions should be the same. The parameter 

vector Ap  is the means by which this is accomplished, or approximated if it cannot be 

perfectly achieved. 

If we consider the example in Figures 1-3, the subject code is ALEGRA. The purpose in 

this case is to perform ALEGRA calculations that compare with oblique shock reflection 

experiments. The vector Ap  in the calculations of Figure 3 has the following components: 

0ρ  - Initial gas density; 

0P  - Initial gas pressure; 

0I  - Initial gas specific internal energy; 

γ  - Ideal gas gamma constant; 

M  - Incident shock wave Mach number; 

θ  - Wedge angle; 

(In calculations, the wedge is treated as a boundary condition, not as a material included in the 

calculation.) These parameters are sufficient for alignment with the experiment because real 

gas effects (which would increase the number of parameters required to describe the gas) and 

roughness of the wedge (which would require parameters for an appropriate boundary 

condition or parameters involved in the treatment of a real wedge in the calculations) are 

considered to be irrelevant in the extraction and interpretation of the presented experimental 

data. 
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The vector Np  in these calculations includes (but is not restricted to) artificial viscosity 

coefficients, hourglass control coefficients, meshing parameters, and choice of numerical 

algorithm features (such as remap characteristics) in the ALEGRA numerical solution of the 

Euler equations. The parameters in Np  do not control the alignment of the validation 

calculations presented in Figure 3 to the specific experiment performed for each data point. 

The only alignment parameter actually varied in Figure 3 is the wedge angle. The initial data, 

including Mach number of the incident shock, did not vary. We are not accounting for 

uncontrolled variability in the initial data of the experiments, nor for inaccuracy in measuring 

experimental parameters, such as the wedge angle. 

The alert reader will notice that, in fact, the calculations presented in Figure 3 do not 

precisely align with the experimental benchmarks, because the choice of computational 

wedge angle was often different than that for the experimental data. This was a decision made 

in the original modeling approach, and does not affect our use of this example to illustrate the 

principle of alignment. 

We have previously discussed the concept of alignment in [16]. We prefer to deal with the 

issue in a simpler form here, but in fact alignment poses a problem that is quite difficult for 

complex validation and calibration tasks. Our concept of alignment also resembles discussion 

of the role of “cues” for general forecasting methods in the paper of Stewart and Lusk [17]. 

For example, in a perfect world the experimental benchmark that we may wish to use will be 

exactly defined by the parameter vector Ap  (the experiment has neither more nor less nor 

different parameters than the calculation) and we know precisely what the values of this 

vector are for the chosen benchmark. One could choose to make this a necessary condition for 

applicability of an experiment as a validation benchmark.  
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Unfortunately, if one enforced that restriction, one would rarely be able to use 

experimental data as a benchmark. Even in the simpler case of verification, we may not be 

able to properly define Ap  to align with the assumptions underlying a chosen analytic 

solution of the partial differential equations of interest, or with other mathematical benchmark 

requirements. It is well-known that there exist analytic solutions, for example in compressible 

hydrodynamics, that may require initial and boundary conditions that are not implemented in 

a given code. A code modification is required to allow full alignment with such a benchmark. 

The Method of Manufactured Solutions typically creates this problem through the need to 

create problem-specific boundary conditions or source terms for the derived test problems 

[7,18]. 

For validation or calibration based on experimental benchmarks, the choice of Ap  for the 

code is often at best a poor approximation of the experimental reality. For example, there may 

be parameters of importance to the experiment that are not even recognized in Ap . Attention 

to uncertainty in this specification is thus required. And, even if we know that Ap  is a good 

approximation to an exact specification of an experimental benchmark, it is unlikely that its 

experimental values are known precisely. Hence the experimental specification of Ap  

contains uncertainty. These two issues are major contributors to the uncertainty underlying 

experimental benchmarks that we must deal with in validation and experimental calibration.  

Technically, uncertainty has two distinct meanings (see [19-28]) that we use in this paper. 

Aleatory uncertainty, also called irreducible uncertainty, is random. Aleatory uncertainty is 

used to describe inherent variation associated with a quantity or phenomenon of interest. 

Further information does not usefully reduce the uncertainty. This is in contrast with 
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epistemic uncertainty, also called irreducible uncertainty (and called subjective uncertainty by 

Helton), which reflects lack of knowledge about the quantity or phenomenon. The implication 

is that this uncertainty can be usefully reduced in principle through the acquisition of more 

information. While probability and statistics is the defined means of quantifying aleatory 

uncertainty, the quantification of epistemic uncertainty is more difficult. A recent issue of the 

journal Reliability Engineering and System Safety is entirely devoted to this topic [29]. 

Proper definition of Ap  is an epistemic uncertainty problem, while particular experimental 

values of properly aligned elements of Ap  is an aleatory uncertainty problem. In general, we 

do not expect to have all of “nature’s parameters” available in the code’s Ap . However, one 

of the most important aspects of designing and performing dedicated validation experiments 

[13] is to maximize the likelihood that the code’s Ap  is sufficient to properly align code 

calculations with experiments. For validation, at least, we thus have some expectation of the 

sufficiency of Ap  to achieve alignment with the experiment. Scientific discovery (as opposed 

to validation) is more likely to result in doubt about the ability of Ap  to achieve alignment 

with an experiment, as well as the ability of ( )M ⋅ to provide a rational basis for that 

alignment. Further discussion of these issues is beyond the scope of this paper. We will 

simply assume the existence of ( ),A Np p p=  and ignore in particular the potential uncertainty 

in the definition and values of Ap . 
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2.3.2. Benchmarks 

We introduced the decomposition of the parameter ( ),A Np p p=  for the purpose of 

refining the definition and application of benchmarks. We now state that a benchmark is a 

choice of Ap  and the benchmark data associated with that choice (along with the implied 

methods of comparison with calculations and conclusion-drawing procedures). We write a 

benchmark as ( )AB p . This notation suggests that a benchmark simply maps the alignment 

parameters into information, either experimental or mathematical (or computational, if an 

alternative code calculation is the chosen benchmark), that can be quantitatively compared 

with some or all of the output of the corresponding code calculation ( ),A NM p p . ( )AB p  may 

be extremely complex, for example including both temporally and spatially resolved data. 

Certainly, in the case of experimental data by simply writing the benchmark as a function of a 

parameter vector we are claiming more than will be the case in many experiments. However, 

as we are emphasizing the logical nature of benchmarks here, we will take this simplifying 

liberty. 

In the case of experimental data, the benchmark information ( )AB p  will have uncertainty 

in the form of bias and variability, for example due to diagnostic uncertainty, and 

experimental bias and variability. We may also have uncertainty about whether or not the 

experiment really provides required benchmark information, such as that specified for  

validation benchmarks by Trucano, Pilch and Oberkampf [13]. One should most generally 

consider the benchmark information ( )AB p  as a random variable, process or field. If we 

formally acknowledge aleatory uncertainty in Ap , then ( )AB p  is also a function of a multi-

variate random variable. This has technical implications for how we should ideally perform 
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verification, validation, and calibration, as it will strongly influence the methods used to 

compare the benchmark information and code calculations, as well as inferential procedures 

dependent upon those comparisons.  

To the degree that one feels uncertain with whether a given set of data should be used as a 

benchmark, say for validation, one is likely dealing with epistemic (lack of knowledge) 

uncertainty. For example, if person A claims “It is important to match experimental data E”, 

person B may alternatively argue “E is the wrong data,” C may argue “But we don’t know 

how close we need to be to E,” and D may argue “The theory required to interpret the 

experiment is wrong.” All of these arguments may contribute epistemic uncertainty to the 

benchmark. This issue is not academic, but must be dealt with constantly in experimental 

validation [13]. 

Different benchmarks defined as above can result from either varying the benchmark 

function ( )B ⋅ , ( ){ }, 1, ,jB j J⋅ = … , by varying the alignment parameter, { }, , 1, ,A ip i n= … ,  or 

both. An example of the former case is to perform measurements of different physical 

quantities at the same spatial location. An example of the latter is to measure the same 

physical quantity at different spatial locations or times. In the most general case, a set of 

benchmarks is then defined by ( ){ }, , 1, , ; 1, ,j A iB p i n j J= =… … . In the following, we will 

only consider variation of the alignment vector in defining a set of benchmarks. Thus, we 

define a set of benchmarks as the collection of benchmark data ( ){ }, , 1, ,A iB p i n= … . We will 

also assume that the benchmark function changes for verification, validation and calibration, 

without introducing this explicitly in the notation. 
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 Verification, validation and calibration are all focused on defining the appropriate set 

( ){ }, , 1, ,A iB p i n= … . We will loosely state that a chosen set of benchmarks defines the 

verification (validation, calibration) domain in the parameter space AP through the set 

{ }, , 1, ,A ip i n= … . This domain is therefore a discrete set, although it is clearly desirable to 

think of it as lying within a continuous region that contains the discrete choices of Ap  as 

much as possible. To what extent this can be done is also an open issue, although this 

assumption is commonly made in practice. The reason for this is that results of comparisons 

of code calculations with such a set of benchmarks are often interpolated to infer presumed 

code credibility (or not) between the benchmarks. This implies an assumption about an overall 

domain containing the set { }, , 1, ,A ip i n= … . The reader should observe that we are enforcing 

our constraint of alignment by emphasizing that only the parameter vector Ap  is meaningful 

in defining these domains; Np  does not enter this discussion. For example, in Figure 3 the set 

of benchmarks is ( ) [ ]( ){ }, , 1, ,18A i r inc iB p p p iθ= ∆ ∆ = …  (there are 18 experimental data 

points in the figure, one of which has no reported error bar). 

We are choosing our words in this discussion carefully. We do not care about the issue of 

whether experimental data are “true” in some absolute sense of the philosophy of science. We 

are simply defining a benchmark to be a choice of data that we are willing to use for purposes 

of verification, validation or calibration, that is, to provide information for some stated goal. 

We assume that it is understood that there are good reasons to use the specified information as 

a benchmark. We have the expectation that these reasons will include evidence that the 

benchmark is accurate and that a calculation can be properly aligned with it. We also have the 
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additional expectation that if there is little or no evidence that a benchmark is actually 

accurate or believable for the purposes of the stated task, then it will not be used. 

Clearly some principles should guide or strengthen the logic of accepting a benchmark for 

the purpose of verification, validation, or calibration. We have defined such a set of principles 

specifically for validation [13]. We have also documented arguments as to why we believe 

that code calculations themselves are undesirable benchmarks [5]. The debate, of course, is 

centered on the use of words like “reasonable” and “evidence.” For example, it is fair to ask 

whether or not we believe that the data shown in Figure 3 are a “reasonable” validation 

benchmark. This issue was discussed in the original reference [14], and it was determined that 

in fact there are significant problems associated with use of these data in a precise validation 

exercise. 

The fundamental purpose of benchmarks is to draw specific conclusions from their 

comparison with calculations. In the case of verification, this purpose is to assess the 

mathematical accuracy of the numerical solutions. For validation, this purpose is to assess the 

physical fidelity for a stated application of the mathematical equations solved in the code. For 

calibration, the purpose is to choose parameter values that improve the agreement of the code 

calculations with the chosen benchmarks, in the belief that such tuned accuracy improvement 

will increase the believed credibility of the code (a goal we consider to be incorrect, as we 

commented in the Introduction). The choice of benchmarks must vary depending on the 

purpose of the comparisons.  

Uncertainty is present in the typical code calculations we are interested in, not only in the 

benchmarks themselves. Uncertainties in calculations have been discussed in many places 

(see, for example, Oberkampf et al. [30]). Uncertainty in a calculation ( )M p  may be present 
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due to uncertainty in Ap  or uncertainty in the specification of Np , although the latter point is 

more controversial. However, uncertainty in ( )M p  also arises independent of  p  for two 

reasons. First, there is the epistemic uncertainty called structural uncertainty, or “model form” 

uncertainty. Its origin is the question of whether the so-called “conceptual model” [6] 

underlying the mathematical equations solved in the code is appropriate for the intended use. 

This includes unknown-unknown factors, such as what physics is missing from the conceptual 

model that is necessary to describe the relevant physical phenomena. To the degree that 

validation is incomplete this uncertainty looms large. (Of course, model-form uncertainty 

poses a broader problem than simply the issue of its contribution to uncertainty in code 

calculations.) Second, there is the epistemic uncertainty associated with imprecise 

characterization of the computational error in any specific calculation. To the degree that 

verification is incomplete this uncertainty looms large. 

Thus, to perform the right comparison between a code calculation and a benchmark, in 

practice as well as in principle the uncertainty present in both should be acknowledged and 

quantified in that comparison. This increases the difficulty of verification, validation and 

calibration considerably. The potential presence of epistemic uncertainty in both the 

benchmark and the code makes the task even harder. The reader should now assume that all 

uncertainties under scrutiny in this paper are quantifiable via probability. We thus avoid 

additional philosophical arguments about how to properly represent epistemic uncertainties. 

The interested reader should consult reference [29].  
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2.3.3. Comparisons 

We now further formalize comparisons between calculations and benchmarks. Up to this 

point, we have treated the comparison dimension of benchmarks as implicit. Here we 

explicitly discuss it. Given the benchmark ( )AB p and a corresponding aligned calculation 

( ),A NM p p a comparison is then a non-negative function of the two that is a measure of how 

similar (or different) they are. We write this as ( ) ( ), ,A N AM p p B p⎡ ⎤⎣ ⎦D . For example (as 

further observed below) the comparison could simply be a norm (in an appropriate space) of 

the difference of ( ),A NM p p  and ( )AB p , in which case the comparison is a functional that is 

equal to zero when the benchmark and calculation are identical (a highly unlikely possibility). 

Given the complexity and uncertainty that characterizes both the benchmark and the 

calculation, however, we reserve the possibility that the comparison cannot be expressed 

simply as the simple difference of the two quantities. 

The concept of a comparison can be extended to a family of benchmarks. For example, 

supposed the benchmark family is simply parameterized by a set of alignment vectors, as we 

have assumed here. Then, given the family of benchmarks ( ){ }, , 1, ,A iB p i n= … and the 

aligned family of calculations ( ){ }, ,, , 1, ,A i N iM p p i n= … the resulting set of comparisons is a 

set of non-negative real numbers: 

 ( ) ( ){ }, , ,, , , 1, ,i
A i N i A iM p p B p i n⎡ ⎤≡ =⎣ ⎦ …D D  (2) 

For the more general case of the benchmark function ( )B ⋅  itself changing, rather than just the 

alignment vector, then it is possible that the comparison will also change. We point out below 
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that we expect this change of comparison function to be inevitable in distinguishing 

verification, validation, and calibration, but we don’t want to wrestle with this additional 

complexity.  

The main logic underpinning (2) is the simple idea that if all [ ],i ⋅ ⋅D are “small” real 

numbers for the presented set of benchmarks, then the calculation and benchmarks are “close” 

over a subset { }, , 1, ,A ip i n= … of the alignment parameter space, and this should lead to a 

conclusion about, say, verification or validation of the model. What “small,” “close” and 

“conclusion” mean in this logic, is in almost all cases dominated by subject matter and the 

specifics of the chosen benchmarks and comparisons. An explicit specification of these words 

for a defined set of benchmarks would complete a full formalism of a benchmark set that 

would be compatible with our original definition of the term benchmark, but this is a task that 

we do not attempt in this paper. Such a formalism would eliminate, for example, intuitive 

statements of how good the agreement of a calculation with experimental benchmark 

information is, and replace it with quantification of the comparison and requirements on the 

precision of the comparison that allow the words “good agreement” to be used to describe it. 

In many cases the specific choice of [ ],⋅ ⋅D  is literally a mathematical norm, such as 

absolute value in the case of scalars (as in Figure 3), or pl norms for more complex data. In 

the case of benchmark data like that in Figure 3, one example of a comparison is  

 ( ) ( ) ( ) ( ), , ,, , calc exptr r
A i N i A i i i

inc inc

p pM p p B p
p p

θ θ∆ ∆⎡ ⎤ = −⎣ ⎦ ∆ ∆
D  (3) 

Equation (3) is written as if the calculations and experimental benchmarks in Figure 3 had 

been defined at the same values of θ . Since this is not precisely true for the particular data of 
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Figure 3, in that case an alternative comparison can be defined in which we interpolate 

between the experimental benchmarks to determine a value of [ ]( )ˆ expt

r inc ip p θ∆ ∆  for the 

angles θ̂  that was actually used in the calculations and then apply the same absolute value 

comparison as in (3). This procedure is permissible if the interpolated experimental data is 

judged to still be a benchmark, which need not be the case. (Clearly, the desirable procedure 

for this example would have been to precisely align the original calculations with the chosen 

benchmarks.) 

Appropriate acknowledgement and quantification of uncertainty in the benchmarks and 

calculations in (2) adds significantly greater technical difficulty to the comparison exercise, as 

well as to the understanding of “close” and “conclusion” previously mentioned.  For example, 

whatever the set of calculated outputs ( ){ }, ,, , 1, ,A i N iM p p i n= …  may mean from the 

deterministic point of view, it means something different if we have quantified computational 

uncertainty in the stated set of calculations. At the very least, we would then hope that we 

have enough information to replace ( ){ }, ,, , 1, ,A i N iM p p i n= …  with a collection 

like{ }, ,, , 1, ,i iM M i nµ σ = … , where ,iM µ  is the mean of the calculation (calculation now 

interpreted as a random variable, process, or field) at ( ), ,,A i N ip p  and ,iMσ  is a measure of 

fluctuation of the calculation at ( ), ,,A i N ip p , perhaps chosen as a statistic of central tendency 

such as variance. Separate comparisons would examine differences between the mean an 

variance of benchmarks and calculations in this case. In general, probability distribution 

differences between benchmarks and calculations could be compared. This would require a 

more elaborate formalism. 
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Conclusions based on uncertainty quantification of the information in the benchmarks, the 

calculations, or both must of necessity be interpreted as statistical or probabilistic information. 

For random variables with known probability distributions that appear in the comparison (2), 

the quantification [ ],⋅ ⋅D can be achieved by comparing probability distributions or their 

moments. Greater complexity results when only statistical characteristics are known. In such a 

case, probability distributions are now estimated, leading to more complicated [ ],⋅ ⋅D ’s, such 

as might involve the use of estimated probability distribution parameters and confidence 

intervals [31]. If epistemic uncertainty is also of concern, then combined statistics from 

families of probability distributions may be compared (through the use of second order 

probability, for example). We will not probe more deeply into this challenge, except to 

emphasize that it exists. Helton [24] discusses this issue from a general perspective; other 

references of interest are [27,28]. 

The representation (2) of a set of calculation-benchmark comparisons presumes ideal 

parameter alignment; that is, the choice of ,A ip  is the same for each benchmark and 

calculation being compared. This leads to questions specific to uncertainty in the alignment 

vector itself. If we had to apply (2) with a significantly different choice of Ap  in a benchmark 

versus that in a calculation, it is unlikely that (2) would be small. Furthermore, even if the 

comparison was small in such a case, what does that mean? But, what does “significantly 

different” really mean? The fundamental issue here is that if uncertainty is acknowledged in 

the definition of Ap , then the value of the alignment vector in the benchmark need not exactly 

agree with that in the calculation. For example, if we ignore the epistemic uncertainty 

contribution mentioned above and only consider variability in Ap , then specific choices of 
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Ap  in (2) should be viewed as samples from an underlying probability distribution. Do these 

sample values need to be identical for the benchmark and the calculation to apply the 

comparison (2)? In principle, both the calculation and benchmark components in (2) should 

treat Ap  as a random quantity, but in practice this is often not done. For example, if and 

experimental benchmark is defined so that Ap  contains an experimental parameter with a 

probability distribution, often the value of this parameter used in a calculation is the mean of 

this distribution. Is this the most useful or appropriate way to conduct a calculation-

benchmark comparison?  Including epistemic uncertainty in Ap  makes the problem more 

difficult.  Here, we simply intend to acknowledge the presence of this difficulty without 

further analysis. We emphasize that our view of alignment between benchmarks and 

calculations in comparisons like (2) serves as a logical guide, but its practical application is 

not transparent. 

In principle, the collection of comparisons in (2) can be summarized in a single non-

negative real number (which may or may not be desirable). A summary comparison in this 

case is written as the sum of the individual comparisons: 

 
( ) ( ){ }

( ) ( )

, , ,
1

, , ,
1

, , 1, ,

, ,

n
i

A i N i A i
i

n

A i N i A i
i

M p p B p i n

M p p B p

=

=

= =

⎡ ⎤= ⎣ ⎦

∑

∑

… D

D

D
 (4) 

For example, if we assume that we had calculations ideally aligned with each of the eighteen 

experimental data points in Figure 3, then equation (4) would look like:  

 ( ) ( ){ } ( ) ( )
18

, , ,
1

, , 1, ,18 calc exptr r
A i N i A i i i

i inc inc

p pM p p B p i
p p

θ θ
=

∆ ∆
= = −

∆ ∆∑…D  
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The summary (4) also suggests the possibility of weighting of individual contributors to a 

collective benchmark, for example as in the form 

 
( ) ( ){ }, , ,

1

, , 1, ,

1, 0

n
i

A i N i A i i
i

i i

M p p B p i n w

w w
=

= =

= ≥

∑

∑

… DD
 (5) 

In terms of Figure 3, equation (5) expresses the possibility that we may care about certain 

wedge angles in the figure more than others for purposes of validation. (In the original Chen 

and Trucano reference, this was exactly the case, although not expressed in this formal sense. 

In that study, the transition to double Mach reflection near a wedge angle of 50 degrees in the 

benchmark data was of the greatest interest for comparison with calculations.)  

Allowing different choices of benchmarks, rather than only different alignment vectors  

Ap , means that quite heterogeneous comparisons might be lumped together within equations 

like (4) or (5). For example, one of the experiments in Figure 3 could have had a time-

resolved measure of a gas field variable at a spatial location, so that an appropriate 

comparison for that data would be a choice of a function space norm. In general, ( )M ⋅  and 

( )B ⋅ will widely different output information, with correspondingly different units (for 

example, energy versus pressure). This means that summary weighted comparisons in the 

form of (5), if desirable, require properly scaled and dimensionless individual comparisons 

Because there is no basis for expecting verification, validation or calibration benchmarks 

to be the same, there is also no reason to expect that verification, validation or calibration 

comparisons should be the same. Thus, for the same code calculation ( ),A NM p p , we may 

have different choices of comparisons [ ],⋅ ⋅VERD , [ ],⋅ ⋅VALD , and [ ],⋅ ⋅CALD  defined. The choice 
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of a collection of benchmarks ( ){ }, , 1, ,A iB p i n= … can also vary depending on the purpose of 

the exercise. As emphasized above, comparisons should acknowledge uncertainty in the 

calculations and the benchmarks in general. In calibration, uncertainty is traditionally 

acknowledged in the benchmark data, but not in the associated calculations. (We discuss this 

in detail in Section 3.) In validation, the quantitative treatment of uncertainty in both 

benchmarks and in calculations is understood to be a major challenge. Oberkampf and 

Trucano [6] present an analysis of useful general characteristics of a validation comparison 

(called a metric in that paper) and a specific example. A different formulation of validation 

comparisons is found in Zhang and Mahadevan [32] and Mahadevan and Rebba [33].  

In verification, we believe that the role of uncertainty has not been recognized to the 

degree that it should be. In our view, uncertainty in verification arises from the need to report 

calculation accuracy rigorously, and the dependence of any reported accuracy upon 

mathematical rigor of the algorithms in the code, as well as their software implementation. 

Reliability of software as a probabilistic concept is recognized [33] and provides some 

foundation for addressing this topic in the breadth we are interested in, but discussion of this 

concept is beyond the scope of this paper (although we do make a further comment about this 

topic in Section 2.3.4).  

Verification and validation have the goal of quantitative assessment of the code credibility 

for a specified application. In terms of our discussion in this paper, we emphasize that 

verification and validation at least require (1) the choice of the appropriate benchmarks 

( ){ }, , 1, ,A iB p i n= … ; (2) the evaluation of [ ],⋅ ⋅VERD  and [ ],⋅ ⋅VALD ; and (3) inference about 

the credibility of the model as a result of these evaluations. They also require significant 
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attention to the numerical parameter vector Np  and its role in determining the numerical 

accuracy of calculations. Calibration, on the other hand, ultimately is simply an optimization 

problem in the absence of acknowledged coupling to verification and validation (we will 

discuss the influence of this coupling in Section 3). In our language here, calibration depends 

upon a calibration comparison [ ],⋅ ⋅CALD . The calibration problem can then be summarized as 

the introduction of an appropriate objective function of the calibration comparison  

 ( ) ( ){ }( ), , ,, , , 1,...,A i N i A iO M p p B p i n⎡ ⎤ =⎣ ⎦CAL CALD  (6) 

In other words, ( )O ⋅CAL  is a function of the value of a set of calibration comparisons applied 

to selected benchmarks and appropriately aligned calculations. An weighted aggregation of 

comparisons as in equation (5) could also be used. The task of calibration is then to minimize 

this objective over a subset of the parameters. While this subset could include the physical 

alignment parameters Ap  (see [35]), ideal alignment fixes all of the components of this 

vector. The assumption of ideal alignment thus means that the calibration minimization can be 

performed only over the numerical parameters Np  (recall that examples of components of this 

vector were discussed in Section 2.3.1). We therefore write the calibration minimization 

problem as: 

 
{ }

( ) ( ){ }( )
,

, , ,, 1, , 1,...,
min , ,

N i
A i N i A ip i n i n

O M p p B p
= ⊂ =

⎡ ⎤⎣ ⎦… CAL CALD
NP

 (7) 

To the degree that one believes that components of Ap  should be included in the 

calibration problem, this reflects imperfect alignment between the benchmarks and the 

calculations. It is our experience that in this case the calibration problem is then sometimes 
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perceived as a means of specifying these alignment parameters. We question the logical 

validity of such a conclusion. 

For the shock wave example of Figures 1 through 3, under the assumption that  Ap  is 

well-defined for these experimental benchmarks the substance of our remarks above is that it 

is unacceptable to consider adjusting the components of Ap , that is wedge angle, initial gas 

constitutive parameters, and the incident shock Mach number, to improve agreement of 

calculations with the benchmarks in Figure 3. Claiming probabilistic variability in the 

components of Ap  does not refute this statement. Known variability, such as in the wedge 

angle measurement, should instead be used to drive a computational uncertainty 

quantification that reflects that variability, and which can be used in a more sophisticated 

validation comparison. 

From our point of view, it is permissible to adjust the components of Np  to improve 

agreement with the experimental benchmarks in Figure 3, although the consequences 

contribute neither to verification nor validation. (Adjusting Np  to better agree with a 

verification benchmark is a logical part of verification, however.) Using the previous example 

and again assuming that calculations have been performed that are aligned properly with the 

eighteen experimental benchmarks, one form of (7) that could result from such a procedure is: 

 
{ }

( ) ( )
, , 1, ,

min , 1, ,18
N i

calc exptr r
i ip i n

inc inc

p pO i
p p

θ θ
= ⊂

⎛ ⎞∆ ∆
− =⎜ ⎟⎜ ⎟∆ ∆⎝ ⎠…

…CAL
NP

 

 

In general, if uncertainty is included in the calibration benchmark and the associated 

calculations, then (7) is an optimization under uncertainty problem. As we have stated 
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previously, for simplicity the reader should view all uncertainty as probabilistically 

characterized, in which case (7) is a stochastic optimization problem. If only uncertainty in 

the specification of { },A ip  and in ( ),A iB p  is of concern, this optimization problem is a 

classical probabilistic parameter estimation problem. We review this problem in Section 3. 

Given the difficulties of verification and validation that we have mentioned above, it is likely 

that code calculation uncertainty will be another contributor to problem (7). Including 

calculation uncertainty in this calibration problem substantially increases the conceptual 

difficulty of calibration and we will discuss this further in Section 3. 

Generalizing the point we made in the shock wave example, we do not view uncertainty in 

the specification of the alignment parameters { },A ip for a set of benchmarks as a license to use 

these parameters in calibration. It is more desirable that this uncertainty be quantified and 

included in the calculated predictions that are of interest. This approach is compatible with the 

general view that for important computational predictions, quantifying uncertainty is more 

important than seeking to reduce it through conservative assumptions and calibration 

[36,24,37-39]. 

 

2.3.4. Credibility 

We now turn our attention to credibility of a code for specified applications. Use of the 

word “credibility” as a description of the quality of a code and its associated calculations can 

be problematic because of the perception of imprecision associated with the concept. The 

Oxford English dictionary [40] defines credible to mean “capable of being believed.” In the 

particular case of codes, for example, credibility does not require truth, accuracy or fidelity. 
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All it requires is belief. However, to be pragmatic and rational, we expect that the credibility 

of a code for an application rests on good reasons and solid evidence. While evidence is 

certainly provided by V&V as we have discussed here, reasons for perceived credibility is not 

necessarily restricted only to V&V. For example, the subjective belief of a scientist using the 

code will undoubtedly count for something in such a consideration. Nonetheless, our opinion 

is that objective and precise reasons for credibility are desired over subjective and imprecise 

reasons, certainly to the degree that belief in code credibility is needed for important 

decisions. We consider the evidence underlying objective and precise reasons for belief a 

code is credible for a specified application to be strictly provided by V&V. It is less clear that 

calibration provides such evidence. 

Given the underlying uncertainty in verification, validation and calibration, it is worth 

restating the impact of this uncertainty on the logic of (The discussion below is a modification 

of a line of argument on general model uncertainty that has been stressed by John Red-Horse. 

See [41].) 

- Verification in the comparison of code calculations with verification benchmarks is 

conditioned on software implementation correctness. By this, we mean that 

uncertainty in verification, for example in the accuracy of one or more code 

calculations, depends on the uncertainty in the software implementation. For example, 

formal techniques such as convergence studies or error estimators may provide 

evidence that calculations are accurate, but belief in these estimators, or the 

probability that they are providing accurate information, is dependent upon the 

probability that there are no software errors corrupting the results. Thus, the numbers 

that enter into and emerge from a verification comparison can be regarded as 
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probabilistic and conditioned by the probability of software implementation 

correctness.  

And, to the extent that there is a probabilistic characterization of the likelihood of a 

bug in the software, this likelihood corrupts definitive acceptance of the results of any 

verification comparison, even if the comparison is based on mathematically rigorous 

procedures. This is one reason why techniques that provide further evidence that 

software is implemented correctly, such as software engineering standards and 

sensitivity analysis in software testing, formally provide enhanced confidence about 

the numerical accuracy of the code. 

If the reader does not accept the view that verification has this kind of probabilistic 

component, the logical dependence of verification upon software implementation still 

makes complete sense. The deterministic form of our argument is that calculation 

verification depends upon code verification [7,6]. However, we believe that a correct 

representation of the issue of verification through benchmarks within a probabilistic 

characterization of software errors is represented by this logic. The reader should 

consult Singpurwalla and Wilson [34] for further discussion of the concepts of 

probabilistic software reliability. 

- Similarly, a probabilistic interpretation of validation through the application of 

validation comparisons is conditioned by the probability that the verification evidence 

accumulated through verification comparisons is sufficient to provide a high 

probability that the algorithms and software implementation are correctly and 

accurately solving the underlying equations of the code.  
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- Finally, calibration is conditioned by the probability that validation has been 

successfully performed. We will summarize at least one way to make the logical 

dependence of calibration upon validation mathematically precise in Section 3.2, when 

we discuss the implication of acknowledging the so-called model discrepancy in 

calibration procedures 

The nested probabilistic dependencies that we have suggested above link the three 

benchmark tasks that we have defined in this paper. Recognition of and incorporation of these 

dependencies in verification, validation, and calibration seems to be necessary for achieving a 

quantitative grasp of credibility of code calculations. But while we can argue that this logic is 

necessary, we are not in a position to claim that it is sufficient for establishing a quantitative 

picture of code credibility. 

A probabilistic interpretation of credibility of the code for stated applications results from 

our view of conditional probabilistic inference as a product of the application of V&V 

benchmarks. This credibility is really based upon the results of applying verification and 

validation benchmarks rather than calibration benchmarks. We hypothesize the existence of a 

formalism that quantifies credibility resulting from defined V&V benchmark studies as 

functions of the comparison results, for example [ ]( ),⋅ ⋅VERDred
VERC  and [ ]( ),⋅ ⋅VALDred

VALC . The 

collective information embedded in these quantities, assuming they can be formulated, should 

summarize the degree to which we believe in the numerical accuracy and physical fidelity of a 

model for an intended predictive application. This belief will be probabilistic and we 

hypothesize a Bayesian “degree of belief” interpretation of this probability (see Earman [42], 

chapter two). 
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It is fair for the reader to question whether such a formalization of “credibility” can ever 

be achieved. One view of this as a possibility is given in Section 3 below, where we argue that 

incorporating model uncertainty in calibration in principle can increase our degree of belief in 

the value of the calibration. We also consider two other examples of credibility formalization. 

The first example of a credibility function is a simple Boolean function (Pass/Fail) 

centered on a verification benchmark. For the Mach flow application presented in Figures 1-3, 

verification of the numerical compressible flow algorithms is an important step. One 

recognized benchmark widely used in the computational shock wave physics community to 

test compressible flow algorithms is the Sod test problem [43]. This is a one-dimensional 

Riemann problem that tests the ability of a code to properly compute the elementary wave 

family (shock, contact discontinuity and rarefaction fan) for a shock tube. This time-

dependent problem has a well-known analytic solution as long as the associated waves have 

not struck the boundaries of the problem. 

The verification comparison for this problem is defined as follows: 

1. Choose a time ( ]0,S It t∈ , where It is the first time that a shock, contact, or  

rarefaction intersect the spatial boundaries of the problem (the spatial domain can 

be assume for convenience to be the interval [ ]0,1x∈ . 

2. Compute the [ ]1 0,1l norm of the difference between the computed density profile 

at time St  , ( ),calc Sx tρ , and the discretized benchmark solution ( ),Sod Sx tρ . Thus, 

we have the comparison: 

 ( ) ( ) ( ) ( ) [ ]1 0,1
, , ,calc S Sod S l

M p Sod p x t x tρ ρ= −⎡ ⎤⎣ ⎦D  
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3. Now define a positive real tolerance ε  by some prescription. (This tolerance is 

typically chosen by subject matter expertise in the absence of formal convergence 

studies with extrapolation to the limit of zero mesh spacing). Then, we define a 

credibility function as: 

( ) ( )( ) ( ) ( ) [ ]( )
( ) ( ) [ ]

1

1

0,1

0,1

, , ,

Pass, if  , ,

Fail, otherwise

calc S Sod S l

calc S Sod S l

M p Sod p x t x t

x t x t

ρ ρ

ρ ρ ε

= −⎡ ⎤⎣ ⎦

⎧ − <⎪= ⎨
⎪⎩

Dred red
VER VERC C

 

The meaning of this statement is: the code is unacceptable if red
VERC returns the fail value. 

(The reason for the failure may be algorithmic, code implementation, user error or all three.) 

It is simply a necessary condition to consider using the code that red
VERC  for the Sod problem 

yields “Pass”. The Sod problem is a relatively benign test problem. Any code that is used to 

compute the experiments with data in Figure 3 should be expected to pass this test, hopefully 

in a logically precise sense as suggested above. Passing this test is not sufficient to guarantee 

mathematical and numerical accuracy for the computed results in Figure 3, however. 

In general, credibility functions similar to the example above can be constructed for 

verification test problems. We have made a leap in formalizing a demand that passing these 

tests be interpreted as necessary conditions for expectation of mathematical and numerical 

accuracy of codes for defined applications. In general, we claim that passing such tests is not 

sufficient for this expectation. How sufficiency can be established through a series of 

benchmarks with these kinds of credibility functions is an open problem. Establishing 

sufficiency almost surely requires a standard for code accreditation that is defined by the 
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appropriate subject matter community. We are unaware of the existence of such standards in 

CS&E. A preferable alternative to defining sufficiency by determination of a panel of experts 

is to rigorously prove that the solution algorithms implemented in the code are solving the 

corresponding partial differential equations correctly. We believe that this level of proof has 

not yet been achieved in general for CS&E. 

As a second, highly-speculative example of a credibility formalism, we comment that in 

statistical software reliability theory [34], statistical models of software failures are developed 

that can be used to predict, for example, the probability that one or more failures will be 

detected over a future interval of time. The example of the Sod problem used above 

demonstrates an extension of the notion of a software failure to include failure to pass CS&E 

benchmark tests. It may then be possible to use probabilistic prediction of future detection of 

benchmark failures as a means of defining credibility for the code. The execution of such a 

strategy is far from obvious, but its interpretation in terms of credibility can be made clear. 

For example, if [ ],current currentF t t T+ is the probability of detecting one or more failures in the 

time interval  [ ],current currentt t T+  ( a period of time T into the future) one might define 

credibility as: if [ ], 0.01current currentF t t T+ > , then the code fails; if [ ], 0.01current currentF t t T+ ≤ , 

then the code passes. In words, if the probability of a detected failure is large enough, the 

code is not credible; if the probability of a detected failure (extended to include benchmark 

tests) is small enough then the code is credible (say for the purpose of using in validation or 

for an application). Clearly these kinds of assessments cannot be decoupled from the intended 

application of the code. The present discussion is only intended to introduce the possibility of 

using this kind of approach in credibility quantification. 
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3. UNCERTAINTY AND PREDICTION IN CALIBRATION 

3.1. Introduction 

 

In this section, we will further explore the topic of predictive credibility by considering 

the calibration problem further. Our goal is to expand the scope of the calibration problem 

from a traditional formulation that neglects model uncertainty to a formulation that explicitly 

acknowledges model uncertainty. In the context of the present paper, an examination of the 

role of model uncertainty in calibration provides additional insight into the discussion of 

Section 2. 

We begin by briefly reviewing classical calibration, and the treatment of benchmark 

uncertainty in this context. The biggest constraint on the credibility of classical calibration 

(parameter estimation) to predict response values is the failure to acknowledge uncertainty in 

the calibrated model (in the language of this literature; for us, a code is an example of a 

model). Given this understanding, we then review some recent research in Bayesian 

calibration methods that formally incorporates an analysis of model uncertainty. We call this 

methodology Calibration Under Uncertainty (CUU).  

The focal point of this analysis is the formalization of a model discrepancy term that can 

then be included in Bayesian calibration methods.  Model discrepancy is a quantification of 

the deviation of the model from a chosen set of benchmarks. In other words, model 

discrepancy is related to the results of verification and validation as described in Sectin 2. Our 

belief is that the study of V&V benchmarks and chosen comparisons yields information that 
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can be used to quantitatively define or constrain this discrepancy. It thus seems likely that 

research on CUU provides, or will provide, useful insight into the meaning and applicability 

of the type of conditional probability that we suggest in (10), although we will not explore this 

idea in any detail in this paper.  

Finally, we move one logical step further in the process of dealing with model uncertainty 

in calibration and suggest a possible relationship between CUU and computational learning 

theory.  The advantage that both Bayesian and learning theory methods can bring to model 

calibration is the formal representation of model discrepancy which can be updated over time 

as one gains additional information.   

We will often use the word “model” in this section, rather than “code,” in conformance to 

the typical language of the topics we review. 

3.2. Traditional Calibration  

3.2.1. General comments about statistical models 

The most common example of a calibration method used in practice is linear least squares 

regression.  While linear regression may not often capture the complex phenomena in CS&E 

models, we list the assumptions underlying linear regression here as a starting point for 

understanding the predictive capability one might obtain using linear regression.  

Regression models are a class of statistical process models.  The underlying assumptions 

used in statistical process modeling are [44,45]: 

1. The underlying process has random variation and is not deterministic.   

2. The mean of the random errors are zero.   

3. The random errors have constant standard deviation/variance.   
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4. The random errors follow a normal distribution.   

5. The data must be sampled randomly from the underlying process.     

6. The explanatory variables (code alignment parameters of Section 2) are observed 

without error.   

 

One of the most important assumptions in prediction is assumption #4, that the random errors 

follow a normal distribution. The assumption that the errors have zero mean and constant 

variance also is important in the formulation of regression models.  The mathematical theory 

for inferences using the normal distribution assumption of error terms is well developed.  In 

practice, the normal distribution often describes the actual distribution of random errors 

reasonably well.  There are a variety of statistical tests to check for normality of errors.  If this 

assumption is violated, then the inferences made about the process based on this assumption 

may be incorrect.   

  

3.2.2. Linear Least Squares Regression 

The most widely-used method to estimate parameters in a model is to use a linear least 

squares regression.  In a regression model with one dependent variable y (that we assume for 

simplicity is a single scalar) and multiple independent variables , 1, ,jx j k= … , the linear 

model is formulated as:  

 0 1 1 ... k ky x xβ β β ε= + + + +  (11) 

where ε  represents random error associated with the model (some textbooks emphasize that 

this error is observational error; others state that all unexplained variation in y caused by 

important by unincluded variables or by unexplainable random phenomena is included in the 
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random error term).   Usually, the random error is assumed to be normally distributed with 

mean 0 and variance 2σ , written ( )2~ 0,Nε σ .   

Least squares regression minimizes the sum of squares of the deviations of the y-values 

about their predicted values for all the data points.  Thus, for n data points, the Sum of 

Squares of the Errors (SSE) is: 

 2
110

1
)]...([ kk

n

i
i xxySSE βββ ++−=∑

=

 (12) 

The quantities kβββ ˆ,..,ˆ,ˆ
10 that minimize the SSE are called the least squares estimates of the 

parameters kβββ ,..,, 10 and the resulting prediction equation is: 

 0 1 1
ˆ ˆ ˆ... k ky x xβ β β ε= + + + +  (13) 

where the “hat” notation can be read as “statistical estimator of.”  Thus, ŷ is the least squares 

estimator of the mean of y , ( )E y , and kβββ ˆ,..,ˆ,ˆ
10 are estimators of the parameters 

kβββ ,..,, 10 .   

In the notation of Section 2, a given set of data points iy  are benchmark data, and the 

regression equation (11) is the numerical model, or code. Thus, linear regression is a 

calibration formulation where we demand ( ) ( )i i i iB p y M p ε= = + .  The alignment parameters 

(“explanatory variables”) are ( ), 1 , ,i i
A i kp x x= … , while the remaining parameters are 

( )0 1, , ,N kp β β β= … . (What could be a very complex family of “numerical” parameters for a 

code are simply the coefficients in the linear model in this case.) Finally, calibration is 

accomplished by minimizing the SSE, which means if:  
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2

0 1 1

1,...
1

[ ( ), ( )] ...

({ [ ( ), ( )]} ) [ ( ), ( )]

i i
i i i k k

n

i i i n i i
i

M p B p y x x

O M p B p M p B p

β β β

=
=

⎡ ⎤≡ − + + +⎣ ⎦

≡∑

CAL

CAL CAL CAL

D

D D
  

then 

 
0 1 0 1

1,..., ,.., , ,..,
min min ({ [ ( ), ( )]} )

k k
i i i nSSE O M p B p

β β β β β β == CAL CALD  (14) 

which is in the form of equation (7). The minimum occurs at ( )0 1
ˆ ˆ ˆ, ,.., kβ β β . 

Regression models calibrated in this fashion are used for prediction in a variety of ways 

without explicit characterization of model uncertainty. Some of the most common prediction 

tasks are to:  

1. Predict a response at a particular set of input variables different than the benchmark 

data. The input variables are also called predictor, independent, or explanatory 

variables. This is done by substituting a particular value of x , say 'x , into the 

regression formula with the fitted coefficients:  'ˆ...'ˆˆ'ˆ 110 kk xxy βββ ++= . This is 

interpreted as: the mean or expected response at input x’ is given by 'ŷ . 

2. Describe the confidence interval (CI) for the mean response at a particular set of input 

values (given in step 1). The confidence interval range (e.g., a 95% CI) is the range in 

which the estimated mean response for a set of predictor values is expected to fall. 

This interval is defined by lower and upper limits, calculated from the confidence 

level and the standard error of the fits. The CI is around the 'ŷ , and is interpreted as:  

the CI will contain the true mean at input 'x  a certain percentage of time (e.g., 95% 

for a 95% CI).   
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3. Describe the prediction interval (PI) at a particular set of input values.  The prediction 

interval is the range in which the predicted response for a new observation is expected 

to fall in a statistical sense.  The PI differs from the CI in that the prediction interval is 

an interval in which a particular response for input 'x ’ is expected to fall, and the CI is 

the interval in which the mean response for input 'x  is expected to fall.  The PI is 

defined by lower and upper limits, which are calculated from the confidence level and 

the standard error of the prediction.  The prediction interval is always wider than the 

confidence interval because of the added uncertainty involved in predicting a single 

response versus the mean response.   

 

The formulas used to calculate the CI and the PI are found in most statistical texts [45].   

An example of confidence vs. prediction intervals for a linear regression model is shown 

in Figure 4.  There, the discrete dots are (calibration) benchmarks, the black solid line is the 

linear regression resulting from the calibration problem (Eq. 14), the dashed red lines are 95% 

CI’s, and the dashed green lines are 95% PI’s. Note that these intervals are around individual 

input points.  Methods such as Scheffé or Bonferroni confidence intervals give CI estimates 

around the regression coefficients [45]. 

Linear regression is used extensively in practice because many processes are well-

described by linear models, or at least well-approximated by a linear model over a constrained 

domain of Ax p= . The statistical theory associated with linear regression is well-understood 

and allows for construction of different types of easily-interpretable statistical intervals for 

predictions, calibrations, and optimizations. These statistical intervals can then be used to give 

clear answers to scientific and engineering questions.   
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The main disadvantages of linear least squares are limitations in the shapes that linear 

models can assume over broader ranges of Ap , and sensitivity to outliers.  Additionally, the 

method of least squares is very sensitive to the presence of unusual benchmark data points in 

the collection used to calibrate a model. One or two outliers can sometimes seriously skew the 

results of a least squares analysis. 

 

3.2.3. Nonlinear Least Squares Regression 

Nonlinear least squares regression extends linear least squares regression for use with a 

much larger and more general class of functions. Almost any function that can be written in 

closed form can be incorporated in a nonlinear regression model [46]. Unlike linear 

regression, there are very few limitations on the way parameters can be used in the functional 

part of a nonlinear regression model. The way in which the unknown parameters in the 

function are estimated, however, is conceptually the same as it is in linear least squares 

regression. 

In nonlinear regression, the nonlinear model between the response y  and the predictor x  

is given as: ( ), Ny f x p ε= + , whereε  is the random error term and Np  is the auxiliary 

parameter vector as in Section 2.  For example, one could have a benchmark data set, 

}...1),,{( niyx ii = where  
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The goal of nonlinear regression is then to find the optimal values of Np  to minimize the 

function 2

1

)),(( Ni

n

i
i pxfy −∑

=

. This problem can be cast in the same form as equation (14) and 

so is also compatible with our discussion in Section 2. 

The value of Np  that minimizes the sum of squares is ˆ Np , and has an estimated 

covariance matrix given by:  2 1ˆ( ) ( ' )Cov p s W W −= , where W  is an n k×  (in general) matrix 

of first derivatives of the assumed nonlinear model ( ), Nf x p evaluated at ˆ Np , and 

( )2 2/ estimator of s SSE n k σ= − = . In terms of prediction, equations similar to linear 

regression are used to calibrate the nonlinear model with the benchmark data. If one is 

predicting the mean response at a particular value of 0x  not in the benchmark data, confidence 

intervals and prediction intervals analogous to those mentioned for linear regression can be 

developed.  

Nonlinear regression is formally similar to linear regression in the sense of calibration 

presented in Section 2 in that the resulting abstract formulation is still iii pMpB ε+= )()( , 

with ( , )Np x p= and Np  determined through a calibration optimization problem.  The main 

differences are that )( ipM  is now a nonlinear function (it could be as complex as a code, of 

course), and the auxiliary parameters Np  no longer enter the formulation as coefficients of a 

linear equation, as in the case of linear regression.  In nonlinear regression, the coefficients 

are usually more closely tied to a physical quantity than in linear regression, as a matter of 

conventional practice.  Nonlinear regression requires an optimization algorithm to find the 

value of Np  that minimizes the sum of squares analogous to equation (14), which rapidly 

increases the technical difficulty of the calibration procedure. Specialized nonlinear least 
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squares optimization algorithms have been designed to exploit the special structure of a sum 

of the squares objective function and solve these complicated optimization problems.  

Nonparametric regression techniques, such as moving least squares, are also used as statistical 

models for data.  In some cases, nonparametric methods may provide better local “fits” of the 

data than nonlinear regression methods.  However, nonparametric regression methods are 

more localized methods (similar to radial basis functions), so we do not see them having the 

same role in calibration as a global regression fit. 

 

3.3. Calibration Under Uncertainty 

The regression methods outlined above are used in calibrating parameters of models, 

taking into account uncertainty in the calibration benchmark data but assuming no uncertainty 

in the model itself. However, model uncertainty also influences the credibility of predictions 

based on the calibration. The Bayesian statistics community has developed formal statistical 

methods that address model uncertainty. This is called Calibration under Uncertainty.  One 

important approach is that of Kennedy and O’Hagan [47], hereafter referred to as KOH.  They 

formulate a model for calibration data that includes an experimental error term (similar to the 

random error term in linear regression) and a model discrepancy term, which quantifies the 

deviation of the model from a chosen set of benchmarks.  Model discrepancy is represented 

by a Gaussian process (think of it as a random field; this representation is more sophisticated 

than a constant bias term).  KOH then use a Bayesian approach to update the statistical 

parameters associated with the discrepancy term and with the model parameters.  The purpose 

of updating is to reduce uncertainty in the parameters through the application of additional 
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information. Reduced uncertainty is presumed to increase the predictive content of the 

calibration.  Examples of application of the KOH approach are given in [48,49]. 

Below, we give a very brief outline of the key points in the KOH approach.  The 

interested reader should peruse the references.   

3.3.1. Kennedy and O’Hagan formulation  

The KOH approach uses the idea of Gaussian processes (GP).  Gaussian Process models 

are used in response surface modeling, especially response surfaces which “emulate” 

computer codes.  Gaussian processes have also been used in conjunction with Bayesian 

analysis for regression problems and for calibration, and for estimation and prediction in 

geostatistics and similar spatial statistics applications [50]. 

A Gaussian process is defined as follows [51]:  A stochastic process is a collection of 

random variables ( ){ }Y x x X∈  indexed by a set X  (in most cases, X is dR , where d is the 

number of model input parameters). A Gaussian process is a stochastic process for which any 

finite set of Y-variables has a joint multivariate Gaussian distribution. Note that the random 

variables Y are indexed by x :  a set such as ( ) ( ){ }1 , , kY x Y x…  has a joint Gaussian 

probability distribution.  A GP is fully specified by its mean function ( )xµ  and its covariance 

function ( ),C x x′ .  The mean function may be a polynomial, a sum of weighted basis 

functions, etc.  The covariance function is often defined as an exponential function of the 

form: ( ) ( )22
0

1

, exp
d

u u u
u

C x x x xν ρ
=

⎧ ⎫′ ′= − −⎨ ⎬
⎩ ⎭
∑ , to reflect the fact that nearby input points have 

highly correlated outputs.  Prediction using GP models involves matrix algebra on the inverse 

of the covariance matrix of all the data points.  
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KOH’s approach also relies on the idea of Bayesian updating.  The basic concept in 

Bayesian analysis is to combine “prior” information (in terms of a distribution on a parameter, 

where the distribution itself is characterized by “hyperparameters”) and actual data (through a 

likelihood function) to obtain a “posterior” estimate of various parameters.  Combining 

Gaussian processes and a Bayesian approach, one places a prior probability distribution over 

possible mean and covariance functions of the GP and generates a posterior distribution on 

the GP parameters based on the data.  One can then sample from the posterior distribution to 

obtain various estimates of the GP prediction.  We do not address the issue of Bayesian 

analysis/Bayesian updating in this paper due to space limitations. Gelman, Carlin, Stern and 

Rubin [52], and Press [53] provide primers on Bayesian topics.  One way to generate a 

posterior distribution is through Markov Chain Monte Carlo sampling (MCMC).   Specific 

references for MCMC sampling include [54,55].  

With this very brief background in Gaussian process models and Bayesian analysis, we 

proceed to the KOH model for calibration under uncertainty. We consider a computer model 

(a computer code in the language of Section 2) denoted ( ),x tη , where ( )1, , qx x x= …  plays 

the role of the previously discussed alignment parameter vector Ap  and the vector 

( )1, , rt t t= … , the calibration parameters in the language of KOH, plays the role of the 

auxiliary parameters Np .  KOH assume that these calibration parameters take fixed but 

unknown “true” values ( )1, , rθ θ θ= …  differentiated from the fixed values t which are set as 

inputs when evaluating the model.   The model ( ),x tη  has uncertainty, with the assumed 

“true” value of the real physical process simulated by the model for the input x  denoted by 

( )xζ .  The outputs from N runs of the computer model are then given by 
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( ){ }, , 1, ,i i iy x t i Nη= = … .  Observed benchmark data for the physical process of interest may 

consist of n N< data points, which we denote as ( )1, , nz z z= … (we assume for simplicity that 

the benchmark data are scalars). In KOH’s formulation, they represent the relationship 

between the observations, the true process, and the computer model output by the 

fundamental equation:  

 

 ( ) ( ) ( ),i i i i i i iz x e x t x eζ ρη δ= + = + +  (15) 

 

where ie  is the observation error (uncertainty in the benchmark data) for the ith observation, 

ρ  is introduced as an unknown regression parameter, and ( )xδ  is the model discrepancy or 

model inadequacy function and is treated as independent of the code output ( ),x tη .  The 

model discrepancy term is an empirical description of model inadequacies and may include 

factors such as code bugs, poor numerical accuracy due to insufficient grid resolution, poor 

alignment with respect to a benchmark, incomplete physics, and so on. Of particular concern 

to us in this paper, poor comparison with benchmarks is a direct measure of an underlying 

model (in our case, code) discrepancy. The KOH model discrepancy is a statistical construct 

that has been primarily applied for relatively simple computational applications compared to 

our CS&E concerns. 

A few comments about this approach are in order. The KOH formalism is a highly 

parameterized method for incorporating model uncertainty in classical statistical calibration 

procedures, with both the code output ( ),x tη  and ( )xδ  represented as Gaussian processes to 
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allow inference.  The error term ie  should include both residual variability as well as 

observation error, but KOH do not strictly address residual variability in the benchmark data 

currently.  They assume that ie  is normally distributed as ( )0,N λ (this assumption rules out 

systematic errors). Assumption of a constant value of the introduced regression parameter ρ  

implies that the underlying benchmark process ( )xζ  is stationary, which is unrealistic in 

many applications.  

Restating several hints made above, the KOH model given in (15) can be mapped to the 

formalism defined in Section 2 as follows:  The code parameter vector decomposition has Ap  

corresponding to x , and Np  corresponding to θ , with specific values alternatively labeled by 

t . The benchmarks are given by z , that is ii zpB =)( .  The code output 

( ) ( ),A NM p M p p≡ is denoted by the KOH “model” ( ),x tη . The distinction between the 

KOH method and the traditional regression approach summarized above is the addition of the 

model discrepancy term in (15).  Thus, in terms of the discussion of Section 2, in the KOH 

approach, we have the benchmark comparison process formalized as: 

( ) ( )( )i i i iB p M p M p e= + ∆ + .  The model discrepancy term ( )iM p∆ in the KOH approach is 

a function only of inputs (alignment parameters) x .  In model verification and validation, an 

important goal is then to quantify the model discrepancy term.  In the KOH approach, the next 

step taken is to use the benchmark data to update assumed prior distributions on parameters in 

the model and model discrepancy terms with Bayesian methods. This type of calibration is not 

an optimization in the sense of minimizing the SSE (as in equation (14)) or an equivalent 

metric.  Rather, the KOH calibration is an updated picture (a posterior distribution) of the 

parameter values governing the model term and model discrepancy term based on Bayesian 
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principles which is aimed at reducing uncertainty in these parameters. This is understood to 

improve the quality of predictions made with the model, not through some kind of tuning of 

model parameters through minimization of a measure of discrepancy with the benchmark 

data, but through more refined quantification of uncertainty in the model parameters. Clearly, 

some sense of when it is important to perform the latter rather than the former process on the 

parameters should serve to drive this methodology. 

The methods for attacking the generation of posterior distributions for the parameters in 

this formalism are complicated. We direct the interested reader to the original work of KOH, 

as well as a detailed summary in Swiler and Trucano [56]. 

 

3.3.2.  Comments on Implementation Issues 

We are presently investigating the feasibility of using a GP formulation such as provided 

by KOH as a practical calibration method for engineering design problems.  Campbell [57] 

has also reviewed KOH’s work with an emphasis on implementation.  She concluded that 

information about model quality gained through the formulation of a model discrepancy term 

could be useful, but that a user should be careful in situations of limited observational data 

and “avoid exaggerating the contribution of the Bayesian updating process.” [57, p. 2]  

As an exercise, we developed a GP emulator for the Rosenbrock function (Swiler and 

Trucano, 2004), a test function used in the optimization community.  We observed that as we 

added data points, the covariance matrix ( ),C x x′ underlying the GP characterization became 

extremely ill-conditioned, and the inverse covariance matrix needed for prediction with 

posterior updates could not be generated (the ratio of largest and smallest eigenvalues in the 
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covariance matrix was 1016!)  Note that this behavior intuitively seems wrong:  more data 

should always be better in terms of creating a response model or performing prediction.  But 

in GP models, if points are close together in the input space, the resulting covariance matrix 

can have rows that are nearly linearly dependent, and the inversion falls apart.  There are 

methods to address this (e.g., singular value decomposition), but our experience stands as a 

caution. Ultimately, we believe this difficulty is algorithmic, rather than conceptual. 

We offer one further caution about these methods.  Thus far, we have found that it is 

difficult to separate the model discrepancy and the observational error term, ie , unless one has 

very good information about measurement error in the benchmark data.  Also, the KOH 

framework requires that the user have reasonably good prior estimates for the parameters of 

both the model emulator GP and the model discrepancy GP.  In practice, this is not always the 

case.  Finally, there is a software implementation issue.  Most public domain software (e.g., 

Netlab, Flexible Bayes Modeling (FBM) software), allows one to create a GP and update the 

hyperparameters governing the GP, usually with a MCMC method.  However, the ability to 

perform simultaneous updating on two GP models coupled by equation (15) to obtain the 

parameters governing both the η  and δ  terms is not generally available.  Finally, MCMC 

methods which are commonly used for these types of problems require the user to have a fair 

amount of statistical knowledge about the form of the posterior (in terms of a “proposal 

distribution” used to generate the Markov chain), certainly in order to make evaluation more 

efficient.   MCMC methods require a lot of tuning parameters, such as step sizes and leaping 

parameters, and it is not trivial to tune the MCMC to obtain a recommended acceptance rate 

of 25%, for example.  And testing convergence of MCMC methods is difficult.  There are 

some convergence diagnostics available [54] but they test if the chain has “settled” out and do 
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not really test if the Markov chain has converged to the “true” underlying posterior 

distribution.   We have tested cases where two different chains produced substantially 

different posterior distributions. It appears to us that tuning MCMC performance and 

improving convergence diagnostics is a research question of interest. 

3.3.3. Conclusions 

Our interest in the work of KOH is dominated by the potential for enhanced prediction 

resulting from CUU methods and on the connection of these methods to V&V through the 

model discrepancy. Overall, our conclusions to date from this work in progress are the 

following:  Gaussian process models are powerful surrogates or response surface “emulators” 

for computationally expensive codes.  Implementing them requires some knowledge about the 

data set used and what data will have to be discarded to make the covariance matrix well-

conditioned; or additional formulations are needed that are robust to poor covariance 

conditioning.   KOH’s formulation of “observation = model + discrepancy + error” is very 

important because it explicitly separates the model discrepancy term from the model itself.  

The Gaussian process assumption of the model discrepancy needs further examination (and 

this might result from focusing V&V results within a CUU framework), but in general, GP 

models are extremely flexible at representing a wide variety of functional relationships.  The 

additional assumption that these GP models are governed by parameters that can be updated 

using Bayesian methods adds a great deal of computational complexity to the picture.  The 

formulation of the joint posterior is difficult.  Even if one does not try for analytic solutions 

but uses MCMC methods, there are many issues to resolve around numerical performance, 

such as convergence of the MCMC to the correct underlying posterior and determination of 

tuning parameters, etc. 
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At this point, we see some interesting paths for further investigation.  One is using KOH’s 

formulation expressed in (15) but calculating the parameters by Maximum Likelihood 

Estimation (MLE) methods instead of Bayesian updating.  Dennis Cox has pursued this 

approach [58] and it removes the difficulties associated with posterior generation (such as via 

MCMC). Another is to look at the first term in equation (15), the model emulation term, and 

replace it with another type of surrogate, perhaps a lower fidelity or reduced order model.  

This has the advantage of “simplifying” the estimation in that one is solely focused on 

calculating the parameters for the GP model, but it may introduce limitations in terms of the 

capability to predict.  

A final thought about the KOH method with respect to calibration is worth emphasizing.  

The updating of parameters governing a Gaussian process model of the code and/or a 

Gaussian process model of the model error does provide new, “calibrated” estimates of the 

hyperparameters of the parameter distributions.  However, it does not directly “optimize” 

these parameters in the sense that regression does:  it merely characterizes them.  In many 

cases, the data may not change the parameters significantly in the Bayesian updating process.  

The method based on learning theory in the following section also characterizes and tries to 

provide a good estimate of the model discrepancy term but does not directly “optimize” 

parameters; rather it is an adaptive method of understanding the discrepancy term.    
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3.4. Extension of the Context of Calibration – Learning Theory 

3.4.1. Introduction 

We have suggested that the complexity of calibration increases (significantly!) as we 

incorporate formal measures of model uncertainty into the procedures. In this section we 

would like to further abstract this issue from a somewhat different perspective, that of the 

mathematics of generalization, also called supervised learning [59]. 

We have observed that the calibration problem, defined in Section 2 as minimization of a 

complex functional such as  
{ }

( ) ( ){ }( )
,

, , ,, 1, ,
min , , , 1,...,

N i
A i N i A ip i n

O M p p B p i n
= ⊂

⎡ ⎤ =⎣ ⎦… NP
CAL CALD  

should include a formalization of model uncertainty, for example as in the model discrepancy 

term, which we here write as ( )M p∆ , discussed in Section 3.3. We have also claimed 

without detailed analysis that the evaluative nature of V&V manifested in the information 

gathered from benchmark comparisons [ ],⋅ ⋅VERD  and [ ],⋅ ⋅VALD  contributes quantitative 

information about the code (model in KOH terms) discrepancy ( )M p∆ .  

One way to conceptually integrate these procedures can be summarized as follows. As we 

stated earlier, the code ( )M p defines a mapping (function) of the input parameter space to the 

output space: 

 ( ) :M p ≡ × →A NP P P O  

The code discrepancy is also such a mapping: 

 ( ) :M p∆ ≡ × →A NP P P O  
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(Note that we no longer assume the restriction of KOH that ( )M p∆ only depends on Ap .) 

For a code that is credible for a specific application associated with a specific choice of p  we 

want ( )M p∆  to be small. The decision to calibrate is simply to force this to happen on a set 

of benchmarks (which we now write in a form to be compatible with learning theory notation) 

( ){ }, ,, , 1, ,A i A ip B p i n≡ = …T through adjustment of appropriate part of p . V&V should 

guide this process through a quantification of ( )M p∆ specifically on the set T and through 

correlation of the features detected in V&V with details of the model structure, including 

algorithm design, software implementation and physics conceptual models. This evaluation 

should include quantification of the uncertainty in T and ( )M p .  

From this perspective, there is then some hope that all of this knowledge, coupled with 

statistical calibration procedures, will provide a prediction of ( )M p∆ off of the benchmark 

set T  that we have some quantitative reason to believe is credibly small. In the language of 

supervised learning, ( )M p∆ is a target relationship between P and O , and T is a training 

set. Via benchmark tasks and the associated inference, we learn about ( )M p∆ from its 

restriction to the training set, and use learning methods to extend this relationship beyond the 

training set. In the ideal, from a perfectly constructed training set T and the right learning 

methods, we can extend ( )M p∆ to the application domain. If ( )M p∆ is then sufficiently 

small on the application domain within this context, we have a formalization of the credibility 

of applying ( )M p  for prediction, i.e. to values of p  different from the training set. This 

formalization will be probabilistic since the learning framework must be probabilistic 

(although this could be subjective, that is not using a frequency-based probability 
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interpretation). We emphasize that calibration is not really fundamental to the learning theory 

generalization of ( )M p∆ from a benchmark training set. However, we are allowing for the 

possibility that ( )M p∆ may not be small enough for the intended application on the training 

set and that an attempt (calibration) will be made to reduce it. Note that neither the KOH 

Bayesian method nor the learning theory approach calibrates parameters directly in terms of 

minimizing the SSE or similar objective functions of the parameters.  Rather, these methods 

improve the characterization of the model discrepancy term ( )M p∆ .  In the KOH approach, 

prior distributions on parameters are assumed, and then calibration is an updated picture (a 

posterior distribution) of these parameter values governing the model term and model 

discrepancy term based on Bayesian principles.  In learning theory, something about 

( )M p∆ is learned from the training set, and this relationship is then extended to an 

application domain.  

We now make some comments about this view of V&V and calibration: 

1. Because of the role of uncertainty in all aspects of V&V, the representation of these 

problems in a learning theory context stated above is rather natural from a 

philosophical perspective.   

2. Learning is a readily recognizable feature of the human interaction with complex 

CS&E codes, as any experienced practitioner will recognize. In particular, this 

learning is expressed in the understanding of variation and choice of the code 

parameters most likely to be used in formal calibrations. Learning is more than 

calibration in the sense that experience provides subjective or otherwise projection of 

the likely code discrepancy that arises when the code is applied away from the 
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experience base of benchmark (or training) data. This empirical experience seems to 

us to be worth understanding more formally in the context of V&V, as well as in 

calibration under uncertainty. 

3. One of the recognized mathematical problems of learning theory 60,61] is the nature 

of the behavior of the choice of generalization of ( )M p∆ (restricting to our context), 

also called the hypothesis, as the training set increases. Any understanding of this 

depends on the nature of the training set as well as technical restrictions on the space 

that ( )M p∆ may be chosen from. When benchmarks in the training set are validation 

benchmarks, this problem expresses concisely one of the most important problems in 

experimental validation – what is the value of performing new validation experiments? 

These authors also note that for a fixed training set there is an optimal complexity of 

the space that ( )M p∆ may be chosen from. This hints at the possibility that 

mathematical learning theory can provide some guidance as to how to choose a 

( )M p∆ that is most usefully generalizable beyond the specified training (benchmark) 

data.  

4. One more time we emphasize our original decomposition of the parameter vector that 

the computational model depends upon. The goal is generalization of ( )M p∆  , that is 

interpolation or extrapolation to other values of Ap , not simply reducing the size of 

( )M p∆ on the specified training set T  (the set of benchmarks). In this way we make 

visible the intuitive fact that generalization is important for credibility, not simply 

point accuracy restricted to the training set. Calibration in isolation from V&V is 
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satisfied with the narrow goal of only making ( )M p∆  small. Developing methods for 

understanding generalization independent of calibration is important, and this is one of 

the reasons to study calibration under uncertainty. 

 

In principle, a learning theory perspective on V&V and calibration can be readily adapted 

to direct application of supervised learning to the code ( )M p . In this case, ( )M p∆ then acts 

in some sense as intermediate information that helps to guide the generalization of ( )M p  by 

means of calibration to reduce ( )M p∆  on the training set. Our belief is that for something as 

complex as a code, it is better to restrict attention in the learning theory context to the 

discrepancy ( )M p∆ . Certainly, we should separate the problem of learning about 

( )M p∆ from the problem of trying to minimize it as a mechanism for confidently 

generalizing ( )M p . For one thing, the more likely it is that ( )M p  is credible, in other 

words, that it is generalizable off the training set, then the more likely it is that ( )M p∆ will 

have a simple structure, for example to be relatively smooth and flat as a function of Ap . In 

this case, it is believable that training will provide a useful generalization of ( )M p∆ . 

Obviously, this argument requires significant elaboration; we are currently engaged in 

research to explore these issues in greater detail. Some further elements of a learning theory  

perspective are briefly summarized below (see also [62]). 
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3.4.2. Vector of learning parameters 

While there are many types of learning, the focus herein is on parameter learning. By this 

we mean that there is a vector of parameters Lp  in the code with components that would 

include a calibration vector (e.g., the vector θ  used in the KOH approach) as well as those 

components of the alignment parameter vector Ap  that are not precisely known. To be 

compatible with the notation of this paper, we can assume that the components of Lp  lie in 

the vector Np  introduced in Section 2, thus implying that ill-defined components of Ap  (for 

whatever reason!) are removed from the alignment process and entered as components in the 

vector that could be calibrated. We thus assume that the components of Lp  cannot therefore 

be assigned in a straightforward manner by alignment or user judgment. This parameter 

vector would be learned as part of a benchmark process through the application of machine 

learning techniques. Some examples of the type of parameters that are found in Lp  are: 

• Unobservable parameters, such as unmeasured quantities in a validation 

experiment, that appear in the code. 

• Component-to-component interaction parameters, such as effective parameters in a 

constitutive  model implemented in the code. 

• Model selection parameters, for example “multipliers” used in a code to adjust the 

relative influence of particular model components in a code. 

• Numerical parameters Np . 
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3.4.3. Types of computational learning 

Learning theory is broad and tends to be highly application specific.  An attempt is made 

here to provide a brief overview of the main goals of learning theory in the context of 

parameter learning so as to contrast the above discussion that focused on statistical 

calibration. We choose to guide this discussion through the description of problems of 

particular interest in computational learning. 

Statistical interpolation.  The abstract goal here is to determine a mathematical manifold 

(essentially a set of high-dimensional surfaces), expressed as a function of Lp , using 

statistical tools. The KOH CUU method is an example of a method which addresses this 

learning goal; many other methods can be found in texts such as that by Hastie, Tibshirani and 

Friedman [63].  These methods work by optimizing the interpolation result with respect to a 

statistical measure of fit, such as likelihood.  Bayesian extensions are also possible, yielding 

probability densities for the parameter vector.  The idea of statistical interpolation is to make 

best use of the information contained in the training data set to guide optimal selection of Lp  

for given choices of Ap  that differ from the training set and can be viewed as interpolating or 

extrapolating the training set. Subject matter expertise (domain expertise in the language of 

learning theory) is needed to define the parameter bounds and to assist in statistical reduction 

of the parameter space, but the interaction between the domain expert and the statistical tools 

is relatively weak in this problem.  In other words, the emphasis is likely on the statistical 

properties of the training data set, not domain knowledge. 

Elicitation of domain knowledge.  The learning goal here is to expand the information 

beyond the training data set by using domain experts (see [64-66]).  The learning constraint, 
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as mentioned earlier, is that the results of this interaction should be restricted to the parameter 

vector Lp  and should not, for instance, require modifications to complex code. Hence, the 

type of domain experts needed here are not necessarily those who write the code, but those 

who are experts in using the code. Except for problems involving simple or well-understood 

systems, it can be assumed that such experts will be available. 

Integrated Learning. Statistical interpolation and domain knowledge can be combined in 

an integrated approach:  this is called integrated learning.   The goal is to be able to elicit 

knowledge from domain experts and use this knowledge in a statistically consistent manner 

with the training data. What is critical here is a close interaction between the domain expert 

and the training data set to allow for insightful interpretation and generalization by the expert 

in the context of the data.  This immediately precludes the use of legacy methods such as 

case-based reasoning and knowledge-based systems, because they are developed for non-

interactive environments where the experts deposits some form of knowledge into a 

computational framework and this knowledge is subsequently applied to a modeling problem.  

This also requires substantial extensions and generalizations of the domain expertise 

interaction used in statistical learning, as described above.  Further details of this approach 

have been summarized in Igusa & Trucano. Other integrated methods, including those using 

agents, are currently being explored. 

 

3.4.4. Parameter reduction and metrics 

High-dimensional parameter problems.  Statistical interpolation can operate directly in 

high-dimensional spaces if the training data set is sufficiently large.  Since the size of such 

sufficiently large training sets grows exponentially with parameter dimension, practical 
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limitations may require some reduced form of statistical interpolation.  There is a large 

collection of statistical reduction techniques that are available, nearly all of which require 

interaction with domain expertise.  For instance, the simplest reduction techniques (such as 

ANOVA [67]) eliminate parameters from the interpolation scheme through sensitivity 

analysis, making the interpolation invariant with respect to these parameters.  Domain 

expertise is needed to indicate whether the system is truly insensitive with respect the 

eliminated parameters. 

Integrated learning couples domain expertise more closely to the parameter reduction 

process.  The essential idea here is to replace a high-dimensional, low-level parameter vector 

with a relatively low-dimensional, high-level feature vector.  The components of the feature 

vector are simple functions of the original parameter vector that are defined through the 

interaction of the domain expert with the computational learning method (through the 

application of projection pursuit regression, for example; see [68,63]).  This is in contrast to 

statistical reduction where a low-dimensional vector is obtained in terms of the original 

parameter vector using generic functions (e.g., sample averages and variances), subsets of 

components, or linear combinations (e.g., principal components).  

Complex observational metrics.  In some simple systems, benchmark data sets 

{ }: 1,...,ijy j m= , say for experiments i=1,...,n, each containing m data values may be 

characterized by small m and a uniformity of data types (including experimental repeats).  In 

such cases, the benchmark comparisons [ ],⋅ ⋅VERD , [ ],⋅ ⋅VALD  and [ ],⋅ ⋅CALD  could be defined 

by the null statistical form, namely, weighted least squares similar to the discussion in Section 

3.2: 
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 { } ( ){ } ( ) 2

1
, , 1, ,

m
M M

ij ij j ij ij
i

y y w y y j m
=

⎡ ⎤ ⎡ ⎤= − =⎣ ⎦⎣ ⎦ ∑ …D  (16) 

 

where ( ),ij A ijy y p= , ( ),
M
ij A ijy M p= . As the data sets increase in size (e.g., time-dependent 

data), then the above function can become dominated by irreducible noise.  (An example is 

where the data y is given by the displacement response of a simple linear oscillator at discrete 

time intervals along with the forcing function, and the measurements of the forcing function 

are corrupted by a small amount of white noise.  If the model M is of a linear oscillator 

subjected to the measured forcing function, then the null statistical metric would provide poor 

resolution, particularly for large time durations.)  With limited interaction with a domain 

expert, it is possible to improve the comparison, using a reduced form of the data.  For time-

dependent data, for instance, some type of reduced frequency representation based on Fourier 

series or wavelets may be appropriate. 

Extrapolation.  It may first appear that statistical learning can be used when interpolating 

and integrated learning would be required when extrapolating beyond a training set.  There 

are several difficulties with this belief, however. First, for high-dimensional parameter 

problems, unless the training data set is sufficiently large, a reduction of the parameter 

dimension is needed.  This process in itself, as stated above, may require an integrated 

learning approach to define the appropriate reduced parameter space. 

Second, we emphasize the definition of extrapolation is not obvious, particularly when 

one examines the training data in the broader context of the system under study.  If the data 
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points are examined from a purely statistical point of view, then extrapolation usually refers to 

a prediction at a point that lies outside of some region R  containing the training data set.  

There are methods which use ellipsoids or other forms to specify R ; one minimalist approach 

is to use a region slightly larger than the convex hull of the training data set.  There are some 

difficulties though: even the convex hull may contain sub-regions that cannot be considered 

for interpolation.  Obvious examples are cases where there are large sub-regions (high-

dimensional holes) without training data.  Less obvious examples are those where the location 

of the parameter point has an important impact on system configuration or performance that 

cannot be directly inferred from the training data (the presence of unexpected phase 

transitions lying between the elements of a set of equation of state data, for example).  In 

these latter examples, the training data must be interpreted as more than simply a collection of 

points in a mathematically structured parameter space. 

An important example where apparent interpolation must be analyzed as extrapolation is 

in complex systems where training data is available only for system components or 

subsystems, and not for the complete system.  For example, in a two-component system, 

where the learning vector is then naturally partitioned as ( ) ( )( )1 2,L L Lp p p=  (in other words, 

where the parameter space as a direct sum of two components), the training data set would 

have parameter values of the form ( )( )1 ,0Lp  or ( )( )20, Lp .  This is illustrated in Figure 6 for the 

case where ( )1
Lp  and ( )2

Lp  are one-dimensional.  While the convex hull of this data set would 

contain intermediate points of the form ( ) ( )( )1 2,L Lp p  as indicated in the figure, in general the 

response of the system cannot be modeled by interpolating responses of the training data set.  

The difficulty here is in the interactions between the systems which are not present, and hence 
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are not modeled in the training data set.  While the computational code may include one or 

more models for this interaction, the training data set does not serve as a benchmark for such 

interaction models.  Hence, the apparent interpolation is actually extrapolation, where zero-

interaction data is used to predict system behavior with interaction. 

The null statistical model is to simply proceed with statistical interpolation, treating the 

training data such as those in Figure 5 as points in parameter space.  The alternate to this null 

model is to use domain expertise in conjunction with the computational model to estimate the 

appropriate types and levels of interaction.  When the interactions are complex, a profound 

level of domain expertise may be needed.  The integration of this expertise in a computational 

learning framework is more difficult than that required in the high-dimensional parameter and 

comparison problems discussed above. 

In summary, computational learning may be used to determine parameter values in a 

calibration sense, to reduce high-dimensional parameter problems to reduced forms, to 

quantify and improve comparisons, and for extrapolation.  
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4. SENSITIVITY ANALYSIS 

The role of sensitivity analysis in the processes of verification, validation and calibration 

is clear. This has been the subject of many previous presentations, for example [69-81]. In all 

specific instances of the verification, validation and calibration formalism suggested here, 

understanding the sensitivity of the associated comparisons and credibility quantifications to 

the individual components in the code parameterizations is fundamental. Parameter sensitivity 

is also important in guiding our studied reaction to model uncertainty. Parsimony, the 

reduction of the size of the parameter vector, is guided by sensitivity analysis and remains an 

important model selection principle. That is, sensitivity analysis is required for understanding 

the extent to which a model is complicated enough to be credible but not too complicated. 

Here, we limit our discussion to two  brief comments about the role of sensitivity analysis 

in V&V that go beyond standard statements about its quantitative importance as found in the 

above references. First, sensitivity analysis directly contributes to the definition of planned 

validation activities that culminate in the definition and application of validation benchmarks 

as defined above. This centers on the use of a Phenomenology Identification and Ranking 

Table (PIRT) in defining the key requirements of planned validation tasks [82]. The origin of 

this key idea lies in the application of high-consequence modeling for nuclear reactor safety 

studies [83], culminating in the development of the Code Scaling, Applicability and 

Uncertainty (CSAU) methodology. As applied to V&V, sensitivity analysis underlies the 

determination of the importance, hence priorities, of code elements that must be subjected to 

V&V in particular studies. The sensitivity analysis may be qualitative and subjective or 

quantitative and objective for the first specification of a PIRT for V&V. In either case, it is 
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expected that the results of V&V tasks performed in response to the PIRT will create new 

understanding of the PIRT information and lead to future modifications. This reflects our 

belief that validation is an ongoing process that can be and should be subject to 

improvements. Sensitivity analysis supports this concept through iterative improvement of our 

quantitative understanding of what is important for validation and how priorities should be 

established at given points in time. IN a resource constrained world, this is not only desirable 

but required. 

Second, we stress that from the perspective of prediction, calculation of parametric 

uncertainties of ( )M p , either local or global, suggests the need to predict these sensitivities 

off the chosen benchmark sets. Ideally, then, we also seek sensitivity benchmarks as part of 

V&V. In other words, we would like to add sensitivity comparisons, [ ],⋅ ⋅SEND , to the catalog 

of comparisons presented in Section 2; this quantity measures the difference between a 

measure of parameter sensitivity for calculations ( ),p A NS M p p⎡ ⎤⎣ ⎦  and  for benchmarks 

( )p AS B p⎡ ⎤⎣ ⎦ . (As one possibility, [ ]pS ⋅  could be scaled derivatives of selected calculation or 

benchmark outputs with respect to the parameter components. It could also be derivable from 

statistical methods. The referenced work at the beginning of this section illustrates the 

possibilities.) For example, to apply this concept in validation would require that not only 

were experimental benchmark data for the benchmark ( )AB p  be acquired but that 

experimental sensitivity benchmark data be acquired.  The degree of agreement with 

benchmark sensitivity data should then further contribute to the credibility associated with the 

code through a sensitivity credibility function [ ]( ),⋅ ⋅red
SENC SEND . Given that such a benchmark 
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task can be performed, the overall picture of credibility of the code is given by the 

accumulated information [ ]( ),⋅ ⋅red
VERC VERD , [ ]( ),⋅ ⋅red

VALC VALD , and [ ]( ),⋅ ⋅red
SENC SEND . 
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5. DISCUSSION 

 

This paper presents a discussion intended to highlight the differences between validation 

and calibration, especially from the view of a rigorous understanding of the (potential) 

credibility of complex computational science and engineering codes used for particular 

applications. In particular, we articulated some concepts for formal assessment of credibility 

of DOE ASC program CS&E codes for use in high-consequence decision applications.  

This is a difficult task, and we have presented only a tentative view of the associated 

problems, certainly not solutions. Our greatest effort over the past few years has been in 

verification and validation. This article can be viewed as a summary distillation of some of 

the insights we have gained regarding calibration as a result of this work. In our own thinking, 

the prominence and difficulty of verification has also enlarged as we have more deeply 

engaged validation questions. Verification remains a key problem for validation as well as the 

broad problem of calibration we sketched in Section 3.  

Konikov and Bredehoeft [8] argue that validation is impossible. While made specifically 

in the context of groundwater flow models, their remarks can be interpreted more generally. 

Two foci of these authors’ argument are problems associated with (1) identification of 

validation as a goal and (2) a suitable definition of scientific prediction. While we agree that 

there are great practical difficulties associated with these two issues, we disagree with the 

substance of the belief in the impossibility of validation. 
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We believe that verification and validation are specialized processes that respond to the 

need to use computational simulation in finite periods of time for key public policy decisions, 

not simply to reflect the growth of scientific and analytical understanding of complex physical 

models. Oberkampf, Trucano and Hirsch [6,10] have emphasized this view of V&V. These 

papers effectively argue at length that V&V is a process of evidence accumulation similar to 

the formation of legal cases. V&V accumulates evidence to support the case for using codes 

for specified applications in a manner similar to the way evidence is accumulated in a civil or 

criminal trial. The processes of high-risk decision making using complex scientific codes as 

decision-support tools can comfortably work within such a V&V framework, as evidenced by 

nuclear power licensing methodology requiring reactor safety analyses and predictions [84]  

and WIPP licensing methodology requiring radionuclide transport analyses and predictions 

[85]. We have attempted to provide a formalization of the logical nature of this process of 

evidence accumulation and quantification in this paper, centered on the definition and 

application of benchmarks. 

The drive for prediction is imposed upon the authors of this paper externally through 

mandates associated with the DOE ASC program. In particular, it is stated in DOE (2004) that 

the strategic goal is “Predictive simulations and modeling tools, supported by necessary 

computing resources, to sustain long-term stewardship of the stockpile.” The expectation of 

predictive modeling is clear. Whether this is a rational goal is not a point of discussion for this 

paper. Rather, we must consider what logical elements are both necessary and sufficient to 

achieve this goal in a way that is useful and understood. Wilson and Boyack [86] and others 

[36,24,37,38,39] argue, and we strongly agree, that the proper context for making high-

integrity predictions from computational models has the form 
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Best Estimate Plus Uncertainty (BE+U) 

 

Our confidence in the quality of BE (Best Estimate) is the accumulation of V&V evidence 

that we have discussed in this paper. For example, identifying a series of validation 

benchmarks that are closely related to an intended application of a code and performing a 

series of calculations with that code that agree well with the benchmarks (in terms of the 

comparisons of Section 2) lead to increased credibility of the code for the application. This 

provides a foundation for presenting a computed result as a BE, as well as for understanding 

the uncertainty in that result. Quantification of U (Uncertainty), which has not been the focus 

of this paper but is clearly related to the processes and results of V&V, is driven by 

identification, characterization and quantification of the uncertainties that appear in the code 

predictions of BE. The thrust of (BE+U) is that prediction is probabilistic precisely because of 

our inability to complete V&V in some definitive sense and because of uncertainties intrinsic 

to complex modeling activities. (BE+U) recognizes the possibilities of inaccuracy and lack of 

scientific fidelity in complex simulations that can never be eliminated and that are, therefore, 

critical for proper communication as part of the process of performing computational studies. 

The greater the risk of the decision processes that use the modeling results, then the more 

important it is to work to this paradigm. This information may be very difficult to assemble 

and communicate. The targeted decision maker may not wish to acknowledge this kind of 

information, for various reasons. But the overarching goal of prediction as (BE+U) remains 

prominent.  
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Our interest in the coordination of validation and formal accounting of model uncertainty 

in calibration methods is rooted in our desire to report (BE+U) in computational studies. 

Much remains to be done. Konikov and Bredehoeft go so far as to argue that focus on V&V is 

destructive, that better words if not operating principles for the computational community are 

“model calibration” and “benchmarking.” One of the suggestions we have made in this paper 

is that these concepts have a formalization that is compatible with V&V as well as dependent 

on it. In our view, it is more important to focus on V&V, not so much for the reason of 

glorifying how much we may know about our codes but for the purpose of critical, objective 

scrutiny of how far they may be from “correct.” At the end of the day, this is the element that 

governs their use and impact on society. 
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Figure 1. Qualitative view of a calculation of double Mach reflection as presented in Chen 

and Trucano (2002). 

 

 

 

Refl
ec

ted
 Pro

pag
ati

on

Incident 
Shock 
Wave 
Direction

Reflective Wedge

Double Mach 
Reflection

θ



 
 
April 26, 2005  SAND2004-6083J 

REVISED MANUSCRIPT 
 

 
96

 

 

 

 

 

 

 

Figure 2. Example of a convergence study performed in Chen and Trucano (2002). 
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Figure 3. Example of a comparison of calculated and experimental data in Chen and Trucano 

(2002). 
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Figure 4. Confidence versus prediction intervals in linear regression.. 
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Figure 5. Illustration of an apparent interpolation point for two-components systems with 

scalar parameters. 

 

 

p(1)

p(2)

training data for 
component 2

training data for 
component 1

apparent 
interpolation


